1. This is a combustion reaction.<span>
<span>Combustion reactions can happen with the </span>presence of O</span>₂ <span>gas. O₂<span>
reacts with another element or compound and </span></span>oxidize<span> it. Here ethanol reacts with O₂<span> and produces </span></span>CO₂ and H₂O as products.<span> <span>Combustion is also called as </span></span>burning. <span>
2.
Reaction will shift to right. <span>
</span><span>If more CH</span>₃CH₂OH is added to the system, then the</span> amount of CH₃CH₂OH will increase.<span> <span>Then the equilibrium in the system </span></span>will be broken.<span> <span>To make the equilibrium again, the </span></span>added CH₃CH₂OH should be removed.<span> To do that system will consume more CH</span>₃CH₂<span>OH to make products which helps to decrease
the amount of ethanol. Hence,
the reaction will shift to right.<span>
3. The reaction
will shift to right.</span><span>
</span><span>If the water is extracted from the system, the </span>amount of water will decrease. <span>That means the </span>amount of products decrease. Then the system will try to gain equilibrium by increasing the water. To increase water the forward reaction should be enhanced. <span>Hence, the</span> reaction will shift to right.<span>
4. The reaction
will shift to right.
</span><span>This is an </span>exothermic reaction <span>since it </span>produces heat. If the produced heat is removed, then the system will be cold. To maintain the temperature, system has to increase the amount of heat produced. Then, the forward reaction should be
enhanced. Hence, the reaction
will shift to right.<span>
5. The Le
Chatelier's principle.
</span>Le Chatelier's principle says if a
condition changes in a system which was in an equilibrium state, the system
will try to gain equilibrium by correcting the changed condition back to
normal. Most of industries which make
chemicals use this principle</span>
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.
Answer
let the oxidation of sulphur is x
2(+1)+x+4(-2)=0
+2+x-8=0
+2-8+x=0
-6+x=0
x=6
Explanation:
i hope this will help you:)
Answer:
《HOPE IT WILL HELP YOU 》
Explanation:
2 Atom of Hydrogen are present in 2 (NaHCO3)
Answer:
The molecules absorb heat and acquire more kinetic energy.
Explanation:
In a solid, the solids only vibrate about their mean positions but do not translate. When energy is supplied to the molecule in the form of heat, the molecules vibrate faster. Eventually, they acquire sufficient energy to leave their mean positions and translate. Hence the solid crystal collapses.
When ice is heated, water molecules acquire sufficient kinetic energy to translate. The intermolecular bonds are gradually broken in the solid framework as heat is absorbed. The heat required for this is known as the latent heat of fusion.
The temperature remains constant until phase transition is over, then temperature rise resumes.