The pressure in a sealed container means the volume of container is fixed
so we cannot change the volume of container hence gas
The other factors which can affect the pressure are
a) moles of gas : if we increase the moles of gas the pressure of gas will increase
b) Temperature: if we increase the pressure of gas the pressure of gas will increase due to increase in kinetic energy
So the following cannot increase pressure
a) decrease in moles of gas
b) decrease in temperature of gas
Answer:
A i. Internal energy ΔU = -4.3 J ii. Internal energy ΔU = -6.0 J B. The second system is lower in energy.
Explanation:
A. We know that the internal energy,ΔU = q + w where q = quantity of heat and w = work done on system.
1. In the above q = -7.9 J (the negative indicating heat loss by the system). w = 3.6 J (It is positive because work is done on the system). So, the internal energy for this system is ΔU₁ = q + w = -7.9J + 3.6J = -4.3 J
ii. From the question q = +1.5 J (the positive indicating heat into the system). w = -7.5 J (It is negative because work is done by the system). So, the internal energy for this system is ΔU₂ = q + w = +1.5J + (-7.5J) = +1.5J - 7.5J = - 6.0J
B. We know that ΔU = U₂ - U₁ where U₁ and U₂ are the initial and final internal energies of the system. Since for the systems above, the initial internal energies U₁ are the same, then we say U₁ = U. Let U₁ and U₂ now represent the final energies of both systems in A i and A ii above. So, we write ΔU₁ = U₁ - U and ΔU₂ = U₂ - U where ΔU₁ and ΔU₂ are the internal energy changes in A i and A ii respectively. Now from ΔU₁ = U₁ - U, U₁ = ΔU₁ + U and U₂ = ΔU₂ + U. Subtracting both equations U₁ - U₂ = ΔU₁ - ΔU₂
= -4.3J -(-6.0 J)= 1.7 J. Since U₁ - U₂ > 0 , U₂ < U₁ , so the second system's internal energy increase less and is lower in energy and is more stable.
The question is incomplete, here is the complete question:
A bottle of rubbing alcohol having aqueous solution of alcohol contains 70% (v/v) alcohol. If Carl buys a 946 ml bottle of rubbing alcohol, how much of the aqueous solution is water?
<u>Answer:</u> The amount of water present in the given bottle of rubbing alcohol is 283.8 mL
<u>Explanation:</u>
We are given:
Volume of bottle of rubbing alcohol = 946 mL
70% (v/v) alcohol solution
This means that 70 mL of rubbing alcohol is present in 100 mL of solution
Amount of water present in solution = [100 - 70] = 30 mL
Applying unitary method:
In 100 mL of solution, the amount of water present is 30 mL
So, in 946 mL of solution, the amount of water present will be = 
Hence, the amount of water present in the given bottle of rubbing alcohol is 283.8 mL
Answer:

<em>The body regulates those levels in an example of homeostasis. When levels decrease, the parathyroid releases hormones. If calcium levels become too high, the thyroid helps out by fixing calcium in the bones and lowering blood calcium levels. The nervous system helps keep homeostasis in breathing patterns.</em>
To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>