Answer:
PQ = 5 units
QR = 8 units
Step-by-step explanation:
Given
P(-3, 3)
Q(2, 3)
R(2, -5)
To determine
The length of the segment PQ
The length of the segment QR
Determining the length of the segment PQ
From the figure, it is clear that P(-3, 3) and Q(2, 3) lies on a horizontal line. So, all we need is to count the horizontal units between them to determine the length of the segments P and Q.
so
P(-3, 3), Q(2, 3)
PQ = 2 - (-3)
PQ = 2+3
PQ = 5 units
Therefore, the length of the segment PQ = 5 units
Determining the length of the segment QR
Q(2, 3), R(2, -5)
(x₁, y₁) = (2, 3)
(x₂, y₂) = (2, -5)
The length between the segment QR is:




Apply radical rule: ![\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)

Therefore, the length between the segment QR is: 8 units
Summary:
PQ = 5 units
QR = 8 units
Answer:
The new and discounted price is now $66.69
Step-by-step explanation:
Hope this helps :)
Answer:
The missing side has a length equal to 
Step-by-step explanation:
We need to find the length of the missing side on the right triangle. We were given the length of the hypotenuse, and the opposite cathetus, therefore we can use the sine relation. This is done below:

The answer is 3x^2-12=-12, imiplies <span>3x^2 = - 12 + 12 = 0
so </span><span>3x^2 = 0 implies x = 0
there is one solution, x =0</span>