Answer: 3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
x
1
)3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
Explanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular lineExplanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular line
H(t) = −16t^2 + 75t + 25
g(t) = 5 + 5.2t
A)
At 2, h(t) = 111, g(t) = 15.4
At 3, h(t) = 106, g(t) = 20.6
At 4, h(t) = 69, g(t) = 25.8
At 5, h(t) = 0, g(t) = 31
The heights of both functions would have been the closest value to each other after 4 seconds, but before 5 seconds. This is when g(x) is near 30 (26-31), and the only interval that h(t) could be near 30 is between 4 and 5 seconds (as it is decreasing from 69-0).
B) The solution to the two functions is between 4 and 5 seconds, as that is when their height is the same for both g(t) and h(t). Actually the height is at 4.63 seconds, their heights are both
What this actually means is that this time and height is when the balls could collide; or they would have hit each other, given the same 3-dimensional (z-axis) coordinate in reality.
Answer:
16
Step-by-step explanation:
b x h is finding a square or rectangle, but since a triangle is half of a rectangle or square you can divide that by 2. So, 8 (b) x 4 (h) = 32, 32 / 2 = 16. Hope this helps! :D
Answer:
hola quetall cm eatanfufuguvuggugdyfyxjcjv
Answer:
$392
Step-by-step explanation:
5.6% of $7000 is 392