4/15 because it can't be reduced any more. I hope this helps you out! :D
I don’t know for sure by 1 cm is a good guess.
Answer:
The value of x that maximizes the volume enclosed by this box is 0.46 inches
The maximum volume is 3.02 cubic inches
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
The volume of the open-topped box is equal to

where

substitute

Convert to expanded form

using a graphing tool
Graph the cubic equation
Remember that
The domain for x is the interval -----> (0,1)
Because
If x>1
then
the width is negative (W=2-2x)
so
The maximum is the point (0.46,3.02)
see the attached figure
therefore
The value of x that maximizes the volume enclosed by this box is 0.46 inches
The maximum volume is 3.02 cubic inches
√200 = √2·100 = √2 · √100 = 10√2
Answer:
Options C and E
Step-by-step explanation:
Option A. Circle
We can't get a cross section in the form of a circle.
Option B. Cube
We can't get a cross section in the form of a cube.
Option C. Rectangle
When we slice a rectangular pyramid parallel to the base but not through the vertex, we get a Rectangle.
Option D. Square
We can not get a square by slicing a rectangular pyramid.
Option E. Triangle
By slicing a rectangular pyramid perpendicular to the base and passing through the vertex we can get the cross section in the form of triangle.
Options C and E will be the answer.