Answer:
x = k - 3
Step-by-step explanation:
Given parameters:
Gradient of the line = 5;
Coordinates; M(x, 8)
N(k, 23)
Solution:
If we use the expression for finding the slope of the line, we can solve this problem;
Slope = 
where
x₁ = x y₁ = 8
x₂ = k y₂ = 23
Input the parameters:
5 = 
15 = 5(k - x)
3= k- x
k - x = 3
Express x in terms of k;
-x = 3 - k
Multiply through by -1;
x = -3 + k
x = k - 3
It's not the volume of the ramp, it's the angle.
anyways here's how to use trig to find the answer:
Tan <A= opposite/ adjacent
Tan <A= 5.0/ 37.4
<A= tan-1 (5.0/ 37.4)
<A= 7.61 degrees.
Answer:
53
Step-by-step explanation:
substitute values in
2(4) + 3(3) + 6(6) = 8 + 9 + 36 which then equals 53
<span>19+52−0−(1)(5)</span>
<span><span><span>71−0</span>−<span><span>(1)</span><span>(5)
</span></span></span></span><span><span>71−<span><span>(1)</span><span>(5)
</span></span></span></span><span><span>71−5
</span></span><span><span>Answer:
66</span></span>
If you do in fact mean
(as opposed to one of these being the derivative of
at some point), then integrating twice gives



From the initial conditions, we find


Eliminating
, we get


![C_1 = -\dfrac{\ln(6)}5 = -\ln\left(\sqrt[5]{6}\right) \implies C_2 = \ln\left(\sqrt[5]{6}\right)](https://tex.z-dn.net/?f=C_1%20%3D%20-%5Cdfrac%7B%5Cln%286%29%7D5%20%3D%20-%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%20%5Cimplies%20C_2%20%3D%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29)
Then
![\boxed{f(x) = \ln|x| - \ln\left(\sqrt[5]{6}\right)\,x + \ln\left(\sqrt[5]{6}\right)}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%29%20%3D%20%5Cln%7Cx%7C%20-%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%5C%2Cx%20%2B%20%5Cln%5Cleft%28%5Csqrt%5B5%5D%7B6%7D%5Cright%29%7D)