Something that a right triangle is characterised by is the fact that we may use Pythagoras' theorem to find the length of any one of its sides, given that we know the length of the other two sides. Here, we know the length of the hypotenuse and one other side, therefor we can easily use the theorem to solve for the remaining side.
Now, Pythagoras' Theorem is defined as follows:
c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
Given that we know that c = 24 and a = 8, we can find b by substituting c and a into the formula we defined above:
c^2 = a^2 + b^2
24^2 = 8^2 + b^2 (Substitute c = 24 and a = 8)
b^2 = 24^2 - 8^2 (Subtract 8^2 from both sides)
b = √(24^2 - 8^2) (Take the square root of both sides)
b = √512 (Evaluate 24^2 - 8^2)
b = 16√2 (Simplify √512)
= 22.627 (to three decimal places)
I wasn't sure about whether by 'approximate length' you meant for the length to be rounded to a certain number of decimal places or whether you were meant to do more of an estimate based on your knowledge of surds and powers. If you need any more clarification however don't hesitate to comment below.
1.1x=17.85
x=16.227272727272727...
Round to $16.23
I believe it is 3. since it touches the x-axis in three areas
Answer:
60°
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relationship between angles and sides in a right triangle. Here, we're given the side Adjacent and the side Opposite the angle of interest. This makes it appropriate to choose the relation ...
Tan = Opposite/Adjacent
For our angle of elevation α, this means ...
tan(α) = 125/72
α = arctan(125/72) = 60.058°
α ≈ 60°
The angle of elevation is about 60°.