Answer:
Nikolai Lobachevsky and Bernhard Riemann
Step-by-step explanation:
Nikolai Lobachevsky (A russian mathematician born in 1792) and Bernhard Riemann (A german mathematician born in 1826) are the mathematicians that helped to discover alternatives to euclidean geometry in the nineteenth century.
Answer: The value of m is 29.
Step-by-step explanation:
Given that, One term of
is
...(i)
We know that that (r+1)th term in
is given by :-
...(ii)
On comparing (i) with (ii) , we get

i.e.

Hence, the value of m is 29.
Hi I Think The Answer is:
31.2 units
Hope This Helped
Is RS perpendicular to DF? Select Yes or No for each statement. R (6, −2), S (−1, 8), D (−1, 11), and F (11 ,4) R (1, 3), S (4,7
guajiro [1.7K]
I'll do the first one to get you started.
Find the slope of the line between R (6,-2) and S (-1,8) to get
m = (y2-y1)/(x2-x1)
m = (8-(-2))/(-1-6)
m = (8+2)/(-1-6)
m = 10/(-7)
m = -10/7
The slope of line RS is -10/7
Next, we find the slope of line DF
m = (y2 - y1)/(x2 - x1)
m = (4-11)/(11-(-1))
m = (4-11)/(11+1)
m = -7/12
From here, we multiply the two slope values
(slope of RS)*(slope of DF) = (-10/7)*(-7/12)
(slope of RS)*(slope of DF) = (-10*(-7))/(7*12)
(slope of RS)*(slope of DF) = 10/12
(slope of RS)*(slope of DF) = 5/6
Because the result is not -1, this means we do not have perpendicular lines here. Any pair of perpendicular lines always has their slopes multiply to -1. This is assuming neither line is vertical.
I'll let you do the two other ones. Let me know what you get so I can check your work.