Answer: 10:55
Step-by-step explanation:
Taking statement at face value and the simplest scenario that commencing from 08:00am the buses take a route from depot that returns bus A to depot at 25min intervals while Bus B returns at 35min intervals.
The time the buses will be back at the depot simultaneously will be when:
N(a) * 25mins = N(b) * 35mins
Therefore, when N(b) * 35 is divisible by 25 where N(a) and N(b) are integers.
Multiples of 25 (Bus A) = 25, 50, 75, 100, 125, 150, 175, 200 etc
Multiples of 35 (Bus B) = 35, 70, 105, 140, 175, 210, 245 etc
This shows that after 7 circuits by BUS A and 5 circuits by Bus B, there will be an equal number which is 175 minutes.
So both buses are next at Depot together after 175minutes (2hr 55min) on the clock that is
at 08:00 + 2:55 = 10:55
Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
Answer:
B
Step-by-step explanation:
Answer:
=
units
Step-by-step explanation:
x₁ = 2 ; y₁ = 5
x₂ = 6 ; y₂ = -1
D = 
=
=
= 
D =
units
Answer:
<em>1.5880 × 10¹.</em>
Step-by-step explanation: