Explanation:
In general, tumors occur when cells divide and grow excessively in the body. Normally, the body controls cell growth and division. New cells are created to replace older ones or to perform new functions.
Answer: Glycogen
Explanation: Glycogen is a polysaccharide of glucose. It serves as a form of energy storage in fungi as well as animals and is the main storage form of glucose in the human body. In humans, glycogen is made and stored primarily in the cells of the liver and the muscles.
Electricity is added to recharge a battery. A third phosphate group is added to ADP to form ATP.
ATP or Adenosine triphosphate contains adenine, ribose and 3 phosphate groups.
ADP is converted to ATP by the following reaction:
ADP+Pi+energy⇄ATP
The analogy between battery and ATP can be explained as ATP is higher energy form and ADP is lower energy form like charged and uncharged form of the battery. When the terminal or third phosphate is removed from the ATP it becomes ADP and releases energy like a battery. The additional phosphate group when added to ADP forms the ATP molecule like the energy spent by the batteries are recharged by putting in additional energy. Here the additional energy is provided by the third phosphate group.
Answer:
Carbon dioxide from the air is used to produce food for plant growth. Carbon moves from plants to animals when animals eat the plants. Also, Carbon moves from living things to the atmosphere. Each time you exhale, you are releasing carbon dioxide gas (CO2) into the atmosphere.
The burning of fossil fuels also releases carbon dioxide into the atmosphere.
Answer:
GAR and AICAR transformylase
Explanation:
Tetrahydrofolate is essential for purine and pyrimidine synthesis, its deficiency can lead to inhibition of nucleic acid such as DNA and RNA and protein synthesis, which are important for the growth and survival of both normal cells and cancer cells. N-10-formyltetrahydrofolate acts as a donor of carbon atoms to the actively growing bases. It contribution is mediated by the action of the Glycinamide Ribonucleotide (GAR) transformylase and the N-5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase.