Step-by-step explanation:
7=4y-13
7+13=4y
20/4=y
5=y
Well, 10 can go into 56, 5 times, so your whole number would be 5.
Then 50 (where did i get 50 from? 5 times the ten is 50) minues 56 is 6. So it would be :
5 and 6/10 (your denominator stays the same)
But it needs o be simplafied to its lowest terms. They are both divisable by 2, SOO 6 divided by 2 is 3, and 10 divided by 2 is 5 So, your new fraction is:
5 and 3/5 in which it cant be simplafied anymore.
<em>~ 5 3/5 </em><em>is your answer :)</em>
<span>inversely
y = k/x
k = yx
k = 10*10 = 100
when y = 20
20 = 100/x
20x = 100
x = 5
answer
</span><span> x = 5 when y is 20</span>
Answer:
The point-slope formula states:
(
y
−
y
1
)
=
m
(
x
−
x
1
)
Where
m
is the slope and
(
x
1
y
1
)
is a point the line passes through.
Substituting the slope and values from the point in the problem gives:
(
y
−
−
1
)
=
3
5
(
x
−
−
3
)
(
y
+
1
)
=
3
5
(
x
+
3
)
If you want the equation in the somewhat more familiar slope-intercept form we can solve this equation for
y
. The slope-intercept form of a linear equation is:
y
=
m
x
+
b
Where
m
is the slope and
b
is the y-intercept value.
y
+
1
=
(
3
5
⋅
x
)
+
(
3
5
⋅
3
)
y
+
1
=
3
5
x
+
9
5
y
+
1
−
1
=
3
5
x
+
9
5
−
1
y
+
0
=
3
5
x
+
9
5
−
5
5
y
=
3
5
x
+
4
5
The point-slope formula states:
(
y
−
y
1
)
=
m
(
x
−
x
1
)
Where
m
is the slope and
(
x
1
y
1
)
is a point the line passes through.
Substituting the slope and values from the point in the problem gives:
(
y
−
−
1
)
=
3
5
(
x
−
−
3
)
(
y
+
1
)
=
3
5
(
x
+
3
)
If you want the equation in the somewhat more familiar slope-intercept form we can solve this equation for
y
. The slope-intercept form of a linear equation is:
y
=
m
x
+
b
Where
m
is the slope and
b
is the y-intercept value.
y
+
1
=
(
3
5
⋅
x
)
+
(
3
5
⋅
3
)
y
+
1
=
3
5
x
+
9
5
y
+
1
−
1
=
3
5
x
+
9
5
−
1
y
+
0
=
3
5
x
+
9
5
−
5
5
y
=
3
5
x
+
4
5
Step-by-step explanation:
Answer:
Step-by-step explanation:
We want to find an equation of a line that's perpendicular to x=1 that also passes through the point (8,-9).
Note that x=1 is a <em>vertical line </em>since x is 1 no matter what y is.
This means that if our new line is perpendicular to the old, then it must be a <em>horizontal line</em>.
So, since we have a horizontal line, then our equation must be our y-value of our point.
Our y-coordinate of our point (8,-9) is -9.
Therefore, our equation is:
And this is in standard form.
And we're done!