For the answer to the questions above,
A) Parrots are following a Geometric Progression of 15% increase.
20(1.15), 20(1.15)², 20(1.15)³,
Function = 20(1.15)^n Where n is at the end of year, n =1, 2, 3, ..
Snakes are increasing by 4.
28, 32, 36,....
Function = 24 + 4n n = number of end year, n =1, 2, 3,...
<span>B) After 10 years: </span>
Parrot = 20(1.15)¹⁰ = 80.91115471
Snakes = 24 + 4(10) = 64
<span>C) After what time they are the same: </span>
We use trial and error:
Test: n 20(1.15^n) (24 + 4n)
1 23 28
2 26.45 32
<span> 3 30.41 36 </span>
4 34.98 40
5 40.23 44
6 46.26 48
7 53.20 52
8 61.18 56
9 70.36 60
After year 7, the Parrots increases far more.
<span>At year 7 they are roughly the same.</span>
Answer:
47
Step-by-step explanation:
the formula is πr²h/3= pi=22/7, so 22/7x 3x 5/3= 47.12389 simplified= 47
Area = square of the measure of a side = 3^(2/7) * 3^(2/7)
= 3 ^(2/7 + 2/7) = 3^(4/7)
Option 2
Step-by-step explanation:
Given that the graph shows the normal distribution of the length of similar components produced by a company with a mean of 5 centimeters and a standard deviation of 0.02 centimeters.
A component is chosen at random, the probability that the length of this component is between 4.98 centimeters and 5.02
=P(|z|<1) (since 1 std dev on either side of the mean)
=2(0.3418)
=0.6826
=68.26%
The probability that the length of this component is between 5.02 centimeters and 5.04 centimeters is
=P(1<z<2) (since between 1 and 2 std dev from the mean)
=0.475-0.3418
=0.3332
=33.32%
Is there an option for (14,8)? It's rise over run