1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
1 year ago
6

Una caja de 25 newtons se suspende mediante un cable con diámetro de 2cm¿cuál es el esfuerzo aplicado al cable?

Mathematics
1 answer:
Naddik [55]1 year ago
5 0

El cable experimenta un esfuerzo axial de 79577.472 pascales por el peso de la caja.

<h3>¿Cómo calcular el esfuerzo aplicado sobre el cable?</h3>

La caja tiene masa y está sometida a un campo gravitacional, por tanto, tiene un peso (W), en newtons. Por el principio de acción y reacción (tercera ley de Newton), encontramos que el cable es tensionado debido a ese peso y su área transversal experimenta un esfuerzo axial (σ), en pascales.

Asumiendo una distribución uniforme de la fuerza sobre toda la superficie transversal de la cuerda, tenemos que el esfuerzo axial se calcula mediante la siguiente expresión:

σ = W / (π · D² / 4)

Donde:

  • W - Peso de la caja, en newtons.
  • D - Diámetro del área transversal de la caja, en metros.

Si sabemos que W = 25 N y D = 0.02 m, entonces el esfuerzo axial aplicado a la cuerda es:

σ = 25 N / [π · (0.02 m)² / 4]

σ ≈ 79577.472 Pa

<h3>Observación</h3>

La falta de problemas verificados en español sobre esfuerzos axiales obliga a buscar uno equivalente en inglés.

Para aprender más sobre esfuerzos axiales: brainly.com/question/13683145

#SPJ1

You might be interested in
Find the sale price or retail price <br><br>Original price= $45<br><br>Percent discount= 15%
Verizon [17]
The sail price would be 38.25 because the original price is 45 and the discount is 15% and that would be 0.15 you need to multiply 45 with 0.15 and that would 38.25
4 0
3 years ago
Divide the rational expressions and express in simplest form. When typing your answer for the numerator and denominator be sure
Veseljchak [2.6K]

Dividing by a fraction is equivalent to multiply by its reciprocal, then:

\begin{gathered} \frac{3y^2-7y-6}{2y^2-3y-9}\div\frac{y^2+y-2}{2y^2+y-3^{}}= \\ =\frac{3y^2-7y-6}{2y^2-3y-9}\cdot\frac{2y^2+y-3}{y^2+y-2}= \\ =\frac{(3y^2-7y-6)(2y^2+y-3)}{(2y^2-3y-9)(y^2+y-2)} \end{gathered}

Now, we need to express the quadratic polynomials using their roots, as follows:

ay^2+by+c=a(y-y_1)(y-y_2)

where y1 and y2 are the roots.

Applying the quadratic formula to the first polynomial:

\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{7\pm\sqrt[]{(-7)^2-4\cdot3\cdot(-6)}}{2\cdot3} \\ y_{1,2}=\frac{7\pm\sqrt[]{121}}{6} \\ y_1=\frac{7+11}{6}=3 \\ y_2=\frac{7-11}{6}=-\frac{2}{3} \end{gathered}

Applying the quadratic formula to the second polynomial:

\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot2\cdot(-3)}}{2\cdot2} \\ y_{1,2}=\frac{-1\pm\sqrt[]{25}}{4} \\ y_1=\frac{-1+5}{4}=1 \\ y_2=\frac{-1-5}{4}=-\frac{3}{2} \end{gathered}

Applying the quadratic formula to the third polynomial:

\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{3\pm\sqrt[]{(-3)^2-4\cdot2\cdot(-9)}}{2\cdot2} \\ y_{1,2}=\frac{3\pm\sqrt[]{81}}{4} \\ y_1=\frac{3+9}{4}=3 \\ y_2=\frac{3-9}{4}=-\frac{3}{2} \end{gathered}

Applying the quadratic formula to the fourth polynomial:

\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot1\cdot(-2)}}{2\cdot1} \\ y_{1,2}=\frac{-1\pm\sqrt[]{9}}{2} \\ y_1=\frac{-1+3}{2}=1 \\ y_2=\frac{-1-3}{2}=-2 \end{gathered}

Substituting into the rational expression and simplifying:

\begin{gathered} \frac{3(y-3)(y+\frac{2}{3})2(y-1)(y+\frac{3}{2})}{2(y-3)(y+\frac{3}{2})(y-1)(y+2)}= \\ =\frac{3(y+\frac{2}{3})}{2(y+2)}= \\ =\frac{3y+2}{2y+4} \end{gathered}

8 0
1 year ago
If the endpoints of the diameter of a circle are (−8, −6) and (−4, −14), what is the standard form equation of the circle?
kondaur [170]

Equation of the circle is (x+6)^{2}+(y+10)^{2}=20.

Solution:

The endpoints of the diameter of a circle are (–8, –6) and (–4, –14).

Center of the circle = Mid point of the diameter

Mid point formula:

$P(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)

Here, x_1=-8, y_1=-6, x_2=-4, y_2=-14

$P(x, y) =\left(\frac{-8-4}{2}, \frac{-6-14}{2}\right)

$P(x, y) =\left(\frac{-12}{2}, \frac{-20}{2}\right)

$P(x, y) =(-6, -10)

Center of the circle = (–6, –10)

Radius is the distance between center and any endpoint of the diameter.

To calculate the radius using distance formula.

r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Here, x_1=-6, y_1=-10, x_2=-8, y_2=-6

r=\sqrt{\left(-8-(-6)\right)^{2}+\left(-6-(-10)}\right)^{2}}

r=\sqrt{(-8+6)^{2}+(-6+10)^{2}}

r=\sqrt{(-2)^{2}+(4)^{2}}

r=\sqrt{20} units

The standard form of the equation of a circle is

(x-a)^{2}+(y-b)^{2}=r^{2}, where (a, b) are center and r is the radius.

Here, center = (–6, –10) and r=\sqrt{20}

(x-(-6))^{2}+(y-(-10))^{2}={(\sqrt{20})} ^{2}

(x+6)^{2}+(y+10)^{2}=20

Equation of the circle is (x+6)^{2}+(y+10)^{2}=20.

4 0
3 years ago
Which graph shows the solution to the system of linear inequalities?<br> y&lt; 2x-5<br> y&gt;-3x + 1
trapecia [35]

Answer:

See explanation

Step-by-step explanation:

Plot the solution sets to both inequalities.

1. For the inequality y First, plot the dotted line y=2x+5 (dotted because sign is without notion "or equal to"), then choose correct part by substitution coordinates of the origin.

2\cdot 0-5=-5

so the origin does not belong to the needed part. Shade the part, which does not include origin.

2. For the inequality y>-3x+1. First, plot the dotted line y=-3x+1 (dotted because sign is without notion "or equal to"), then choose correct part by substitution coordinates of the origin.

-3\cdot 0+1=1>0

so the origin does not belong to the needed part. Shade the part, which does not include origin.

3. Find the common region of these two shaded parts - this is the solution to the system of two inequalities.

5 0
3 years ago
What can you conclude about the tangent lines and the diameter of a circle?
svetlana [45]

Answer:

B. perpendicular Hope this helps!

6 0
3 years ago
Other questions:
  • The fifth-grade classes at Brookfield School used five identical buses to go on a field trip. •There were a total of 40 seats on
    12·1 answer
  • S=5(3.14)ab+5(3.14)s^2
    6·1 answer
  • Guys im on my english homeworks now'
    7·1 answer
  • 5 points
    7·1 answer
  • A CIRCLE HAS A CIRCUMFENCE 43.96 YD FIND THE RADUIS OF THE CIRCLE
    12·2 answers
  • The graph of linear function k passes through the points (-3, 0) and (1, 8).
    8·1 answer
  • Make v the subject formulae
    12·2 answers
  • Krystal and Danielle each improved their yards by planting daylilies and ivy. They bought their
    10·1 answer
  • Mia placed a point P on the number line give the value of the number P as a fraction what does the denominator denominator of a
    10·1 answer
  • A ball is thrown vertically upwards from the ground. It rises to a height of 10m and then falls and bounces. After each bounce,
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!