Answer:
solved
Step-by-step explanation:
4n-28 -2n -6 -15n
-13n-34
-(13n+34)
Splitting up [0, 3] into
equally-spaced subintervals of length
gives the partition
![\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%20%5Cdfrac3n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac3n%2C%20%5Cdfrac6n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac6n%2C%20%5Cdfrac9n%5Cright%5D%20%5Ccup%20%5Ccdots%20%5Ccup%20%5Cleft%5B%5Cdfrac%7B3%28n-1%29%7Dn%2C%203%5Cright%5D)
where the right endpoint of the
-th subinterval is given by the sequence

for
.
Then the definite integral is given by the infinite Riemann sum

Answer:
Length of the garden = 10 ft
Step-by-step explanation:
Perimeter of a garden = 2(length + width)
Perimeter of the garden = 32 ft
Width of the garden = 6 ft
Length of the garden = x ft
Perimeter of a garden = 2(length + width)
32 = 2 ( x + 6 )
Open parenthesis
32 = 2x + 12
Subtract 12 from both sides
32 - 12 = 2x + 12 - 12
20 = 2x
Divide both sides by 2
20 / 2 = 2x / 2
10 = x
x = 10 ft
Therefore, length of the garden = x = 10 ft
Answer:
64x³+4
-------------
2x-1
Step-by-step explanation:
I hope this helps. :)