The answer is: The diameter is 4 centimeters.
The explanation is shown below:
1. The volume of the cylinder is:

Where
is the radius (
) and
is the height (
).
Then:
2. The total volume of the 12 spheres is:

3. The volume of the cylinder and the total volume of all the 12 spheres, are equal, therefore:

4. Now, you must solve for the radius:
![r=\sqrt[3]{\frac{128\pi}{16\pi}}\\r=2cm](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B128%5Cpi%7D%7B16%5Cpi%7D%7D%5C%5Cr%3D2cm)
5. The diameter is:

Answer:
correct choice is 1st option
Step-by-step explanation:
Two given triangles have two pairs of congruent sides: one pair of length 7 units and second pair of length 8 units. The third side is common, i.e the lengths of third sides are equal too.
Use SSS theorem that states that if three sides of one triangle are congruent to three sides of another triangle, then these two triangles are congruent.
Thus, given triangles are congruent by SSS theorem.
Answer:
Grouping and then use the common factor. Therefor the answer is 6(2p+5)
Step-by-step explanation:
I hope this helps.
Answer:
If thrown up with the same speed, the ball will go highest in Mars, and also it would take the ball longest to reach the maximum and as well to return to the ground.
Step-by-step explanation:
Keep in mind that the gravity on Mars; surface is less (about just 38%) of the acceleration of gravity on Earth's surface. Then when we use the kinematic formulas:

the acceleration (which by the way is a negative number since acts opposite the initial velocity and displacement when we throw an object up on either planet.
Therefore, throwing the ball straight up makes the time for when the object stops going up and starts coming down (at the maximum height the object gets) the following:

When we use this to replace the 't" in the displacement formula, we et:

This tells us that the smaller the value of "g", the highest the ball will go (g is in the denominator so a small value makes the quotient larger)
And we can also answer the question about time, since given the same initial velocity
, the smaller the value of "g", the larger the value for the time to reach the maximum, and similarly to reach the ground when coming back down, since the acceleration is smaller (will take longer in Mars to cover the same distance)