Explanation:
1. Attachment
Electron dot structure of H2S (hydrogen sulfide)
2. Attachment
Electron dot structure of F2 (Fluorine).
Answer:
i) CCl₄ and Br₂ does not react
ii) CBr₄ + Cl₂ → CCl₄ + Br₂
Explanation:
i) CCl₄ + Br₂ (no reaction)
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CCl₄ + Br₂ will not have a reaction as the propensity for the chlorine to stay combined with the carbon is higher than the ability for bromine to remain combined with or attract the carbon. Therefore, for CCl₄ + Br₂ there is no reaction
ii) CBr₄ + Cl₂
From the given activity series, we have that chlorine gas, Cl₂, is more reactive than bromine gas, Br₂, therefore, a reaction of CBr₄ + Cl₂ will give products that will have the Br in the CBr₄ replaced by the Cl₂ as follows;
CBr₄ + Cl₂ → CCl₄ + Br₂
The products of the reaction of CBr₄ and Cl₂ are therefore CBr₄ and Cl₂.
Puberty is what is correct I believe
To solve this we assume that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 42.0 x 12.5 / 75.0
V2 = 7.0 L