1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
6

Whos the first president of the united states

Mathematics
2 answers:
aalyn [17]3 years ago
7 0
George Washington.

He served two terms and was begged for a third but he decided to give someone else a chance and this is when the law came into place of no more terms served than two!

Hope this helps!
7nadin3 [17]3 years ago
6 0
George Washington..was the first president
You might be interested in
Help me with this problem, i have to simply this ratio
Elena-2011 [213]
Keep on dividing them both by 2
4 0
2 years ago
What is the common ratio between successive terms in the sequence?
ruslelena [56]

Answer:

1/3

Step-by-step explanation:

the formula of common ratio is given as

r = \frac{a2}{a1}

a1= 27 ,a2=9

r= 9/27

r= 1/3

3 0
2 years ago
(536872353653255 X 66436554169699994574)=A<br><br> A=Answer
Advocard [28]

Answer:

oo answer A

Step-by-step explanation:

Oo answer A

Sna amaktukong po

7 0
2 years ago
PLEASE ANSWER! DESPERATE, DONT KNOW HOW TO DO IT!
Annette [7]

Answer:

a) x = -7

b) x = -3/2

c) x = -3/2

d) x = 2

e) x = -1

f) x = -2

g) x = 7/3

h) z = -18/5

i) x = 6

Explanation:

The are a couple of rules you should know first.

Negative exponent rule: a^{-x} = \frac{1}{a^{x}}

A negative exponent means the same thing as the positive exponent as a denominator under 1.

Exponent to another exponent: (a^{x})^{n}=a^{xn}

When raising an exponent to another exponent, you multiply the exponents.

Fraction as a base rule: (\frac{a}{b})^{x} = \frac{a^{x}}{b^{x}}

Apply the exponent to the numerator and denominator.

Base 1 rule: 1^{x} = 1

1 to the power of anything is 1.

Focus on exponents only: a^{x} = a^{n}\\x = n

If the bases are the same on both sides of the equation, you can solve for "x" in the exponent by focusing on it only.

Write as an exponent: Rewrite a normal number as an exponent instead. Example: 8=2^{3} or 125=5^{3}

Also, you need to know how to rearrange and simplify formulas to isolate variables (by doing reverse operations in reverse BEDMAS order).

Know how to use the distributive property with brackets, when you multiply each of the terms in the brackets with the term on the outside.

Use each of these rules to solve.

a) 2^{x+4} = \frac{1}{8}   Write 8 as exponent

2^{x+4} = \frac{1}{2^{3}}   Negative exponent rule

2^{x+4} = 2^{-3}   Focus on exponents only

x+4 = -3   Subtract 4 from each side to isolate

x = -3-4

x = -7

b) 9^{x}=\frac{1}{27}   Write 27 as exponent

9^{x}=\frac{1}{3^{3}}   Write 9 as exponent

(3^{2})^{x}=\frac{1}{3^{3}}   Exponent to another exponent

3^{2x}=\frac{1}{3^{3}}   Negative exponent rule

3^{2x}=3^{-3}   Focus on exponents only

2x=-3   Divide both sides by 2 to isolate

x=-\frac{3}{2}

c) 25^{x}=\frac{1}{125}   Rewrite 125 as exponent

25^{x}=\frac{1}{5^{3}}   Rewrite 25 as exponent

(5^{2})^{x}=\frac{1}{5^{3}}   Exponent to another exponent

5^{2x}=\frac{1}{5^{3}}   Negative exponent rule

5^{2x}=5^{-3}   Focus only exponents only

2x=-3   Divide both sides by 2 to isolate

x=-\frac{3}{2}

d)  7(3^{x})=63   Divide both sides by 7 to isolate

3^{x}=63/7

3^{x}=9   Write 9 as exponent

3^{x}=3^{2}   Focus on exponents

x=2

e) 10^{3x}=0.001   Write 0.001 as fraction

10^{3x}=\frac{1}{1000}   Write 1/1000 as exponent

10^{3x}=\frac{1}{10^{3}}   Neg. exponent

10^{3x}=10^{-3}   Focus on exponents

3x=-3   Divide both sides by -3

x=-3/3

x=-1

f) 6(\frac{1}{10})^{x}=600   Divide both sides by 6

(\frac{1}{10})^{x}=\frac{600}{6}

(\frac{1}{10})^{x}=100  Write 100 as exponent

(\frac{1}{10})^{x}=10^{2}   Fraction as base rule

\frac{1^{x}}{10^{x}}=10^{2}   Base 1 rule

\frac{1}{10^{x}}=10^{2}   Neg. exponent

10^{-x}=10^{2}   Focus on exponent

-x=2   Divide both sides by -1

x=-2

g) 27^{x-3}=(\frac{1}{3})^{2}   Write 27 as exponent

(3^{3})^{x-3}=(\frac{1}{3})^{2}   Exponent to another exponent

3^{3(x-3)}=(\frac{1}{3})^{2}   Fraction as base

3^{3(x-3)}=\frac{1^{2}}{3^{2}}   Base 1 rule

3^{3(x-3)}=\frac{1}{3^{2}}   Neg. exponent

3^{3(x-3)}=3^{-2}   Focus

3(x-3)=-2   Distribute over brackets

3x-9=-2   Add 9 to both sides

3x=-2+9

3x=7   Div. both sides by 3

x=\frac{7}{3}

h) 4^{\frac{2z}{3}} = 8^{z+2}   Write 4 as exponent

(2^{2})^{\frac{2z}{3}} = 8^{z+2}   Exponent to another exponent

2^{2\frac{2z}{3}} = 8^{z+2}   Write 8 as exponent

2^{2\frac{2z}{3}} = (2^{3})^{z+2}   Exponent to another exponent

2^{2\frac{2z}{3}} = 2^{3(z+2)}   Focus

2\frac{2z}{3} = 3(z+2)   Multiply whole number with fraction

\frac{4z}{3} = 3(z+2)   Distribute

\frac{4z}{3} = 3z+6   Multiply both sides by 3

4z = 3(3z+6)   Distribute

4z = 9z+18   Subtract 9z from both sides

4z-9z = 18

-5z = 18   Div. both sides by -5

z = -\frac{18}{5}

i) 5(2)^{x-1}+3=163   Subtract 3 on both sides

5(2)^{x-1}=163-3

5(2)^{x-1}=160   Div. both sides by 5

(2)^{x-1}=160/5

(2)^{x-1}=32   Write 32 as exponent

(2)^{x-1}=2^{5}   Focus

x-1=5   Add 1 to both sides

x=5+1

x=6

5 0
3 years ago
Help Due today question Below
statuscvo [17]
Since they gave you the boxes you need the first number to be zero therefore having the quotient starting with zero. Then you may divide normally

8 0
2 years ago
Read 2 more answers
Other questions:
  • Ben's $1,000.00 bond earns 7.5% in annual interest. What is the annual interest?
    9·1 answer
  • Given lines appearing parallel are parallel, ∠7=30°, and ∠10=80°, find the measure of the following angles.
    7·1 answer
  • A country's population in 1991 was 15 million. In 2001 it was 16 million. Estimate the population in 2005 using thr exponential
    15·1 answer
  • Please help I can't work out the gradient​
    15·1 answer
  • I really don't understand this I need help
    15·1 answer
  • What is the value of x?<br> a. x = 18<br> b. x = 48<br> c. x = 82 <br> d. x = 98
    11·1 answer
  • Find the missing number?
    8·1 answer
  • Choose the correct solution and graph for the inequality "-x/3&lt;=6"
    6·1 answer
  • 2; 4; 6; 8; ...
    9·1 answer
  • PLEASE HELP!!! 100 POINTS!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!