Answer:
P(X>4)= 0.624
Step-by-step explanation:
Given that
n = 10
p= 0.5 ,q= 1 - p = 0.5
Two fifth of 10 = 2/5 x 10 =4
It means that we have to find probability P(X>4).
P(X>4)= 1 -P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)
We know that





P(X>4)= 1 -P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)
P(X>4)= 1 -0.0009 - 0.0097 - 0.043 - 0.117-0.205
P(X>4)= 0.624
For b it's 39 because you multiply 5 and 7 giving you 35 then add 4 Wich equals 39. I might be incorrect. check it out.
B just trust me bro I got you
Answer:
There are a total of 23 cars with air conditioning and automatic transmission but not power steering
Step-by-step explanation:
Let A be the cars that have Air conditioning, B the cars that have Automatic transmission and C the cars that have pwoer Steering. Lets denote |D| the cardinality of a set D.
Remember that for 2 sets E and F, we have that

Also,
|E| = |E ∩F| + |E∩F^c|
We now alredy the following:
|A| = 89
|B| = 99
|C| = 74

|(A \cup B \cup C)^c| = 24
|A \ (B U C)| = 24 (This is A minus B and C, in other words, cars that only have Air conditioning).
|B \ (AUC)| = 65
|C \ (AUB)| = 26

We want to know |(A∩B) \ C|. Lets calculate it by taking the information given and deducting more things
For example:
99 = |B| = |B ∩ C| + |B∩C^c| = 11 + |B∩C^c|
Therefore, |B∩C^c| = 99-11 = 88
And |A ∩ B ∩ C^c| = |B∩C^c| - |B∩C^c∩A^c| = |B∩C^c| - |B \ (AUC)| = 88-65 = 23.
This means that the amount of cars that have both transmission and air conditioning but now power steering is 23.