1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
14

Name the expression based on its degree and number of terms. 7a3 + 4a - 12

Mathematics
2 answers:
maria [59]3 years ago
8 0

Answer:

21ax+4a−12

Step-by-step explanation:

Masteriza [31]3 years ago
5 0

Answer:

I just did this the answer is cubic trinomial

Step-by-step explanation:

You might be interested in
The circumference of a circle is 53.38 centimeters.
vfiekz [6]
The area would be 226.75
6 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
2 years ago
Read 2 more answers
8*{[7+4)*2-[(11-7)*4]}
Rzqust [24]

Answer:

(8 (-1))

Step-by-step explanation:

Simplify the following:

8 (7 + 4×2 - 4 (11 - 7))

11 - 7 = 4:

8 (7 + 4×2 - 44)

4×2 = 8:

8 (7 + 8 - 4×4)

-4×4 = -16:

8 (7 + 8 + -16)

7 + 8 = 15:

8 (15 - 16)

15 - 16 = -(16 - 15):

8 (-(16 - 15))

| 1 | 6

- | 1 | 5

| 0 | 1:

8 (-1)

8 (-1) = (8 (-1)):

Answer: (8 (-1))

8 0
3 years ago
6) Dairon needs 20 pieces of string 3/8
OleMash [197]

Answer:

I do believe that your correct anwer is D.

Step-by-step explanation:Hope it helped

3 0
3 years ago
Why are you allowed to move the decimal points before dividing with decimals? Explain your reasoning.
madam [21]

If you move the decimal point the same number of places in the dividend and the divisor, you are multiplying them both by the same power of 10. That does not change the quotient.

7 0
3 years ago
Read 2 more answers
Other questions:
  • to qualify as a contestant in a race, a runner has to be in the top 16% of all entrants. The running times are normally distribu
    8·1 answer
  • Zoe needs to by beads to make jewelry. For each earring, Zoe uses 3 small blue beads, 1 small metallic bead and 2 large green be
    13·2 answers
  • Can someone please solve and explain this?
    9·1 answer
  • D: the graph crosses the y-a is at (-6,0), decreasing from x=-10 to x=-2 and remaining constant from x=-2 to x=10.
    11·1 answer
  • How do I find the nth term of the arithmetic sequence -2,2,6,10
    10·1 answer
  • When rolling a fair number cube with numbers 1 through 6, what is the probability of rolling a number less than 5?
    10·2 answers
  • A rectangular prism has a volume of 66 ft³, a height of 2.2 ft, and a length of 5 ft. What is the width of the prism?
    9·1 answer
  • A crack in the Earth's crust
    8·2 answers
  • How is the relationship between the formula for the volume of a cone and the formula for the volume of acylinder
    10·1 answer
  • Solve each equation
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!