Answer:
m=-1
Step-by-step explanation:
let me know i can help more snap me
Answer:
By the Chebyshev Theorem, at least 75% of commuters in Boston has a commute time within 2 standard deviations of the mean
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by
.
What minimum percentage of commuters in Boston has a commute time within 2 standard deviations of the mean
By the Chebyshev Theorem, at least 75% of commuters in Boston has a commute time within 2 standard deviations of the mean
Answer:
hello your question is incomplete below is the missing parts
(a) A\ (A\B) = B\(B\A)
(b) A\ (BA) = B\(A\B)
answer : A\ (A\B) = B\(B\A) = always true
A\ (BA) = B\(A\B) = sometimes true and sometimes false
Step-by-step explanation:
(a) A\ (A\B) = B\(B\A). = ALWAYS TRUE
using de Morgan's law to prove this
A\ (A\B) = A\ ( A ∩ B^c )
= A ∩ ( A^C ∪ B )
= ( A ∩ A^C ) ∪ ( A ∩ B )
= Ф ∪ ( A ∩ B )
= ( A ∩ B )
ALSO : B\(B\A) = attached below is the remaining parts of the solution
B) A\ (BA) = B\(A\B) = Sometimes true and sometimes false
attached below is the prove using De Morgan's law
The answer would be 8/15. You multiply the numerators which gives you 8 and the denominators which gives you 15, since 2 times 4 is 8 and 3 times 5 is 15.