RADIATION
There are three types of heat transfer or heat propagation; conduction, convection and radiation. Heat transfer is the process by which heat projects externally however, depending on the temperature and pressure. Also called the movement of heat from a low temperatured state which increases as heat progresses.
Conduction is the heat transfer by contact, immediate contact.
Convection is the transfer of heat through air and water.
<span>Radiation is the transfer of heat regardless of the presence of atoms or particles.<span>
</span></span>
To develop this problem it is necessary to apply the concepts related to the proportion of a neutron star referring to the sun and density as a function of mass and volume.
Mathematically it can be expressed as

Where
m = Mass (Neutron at this case)
V = Volume
The mass of the neutron star is 1.4times to that of the mass of the sun
The volume of a sphere is determined by the equation
Replacing at the equation we have that



Therefore the density of a neutron star is 
The changes in celsius are the same as those in kelvins. the difference between the two scales is that 0 celsius is about 273 kelvins and that 0 kelvins is about -273 celsius (note the minus sign)
Answer:
Induced emf in the loop is 0.02208 volt.
Induced current in the loop is 0.0368 A.
Explanation:
Given that,
Area of the single loop, 
The initial value of uniform magnetic field, B = 3.8 T
The magnetic field is decreasing at a constant rate, 
(a) The induced emf in the loop is given by the rate of change of magnetic flux.

(b) Resistance of the loop is 0.6 ohms. Let I is the current induced in the loop. Using Ohm's law :

Hence, this is the required solution.
Answer:
2. The metal surface exerts less frictional force because there are fewer bumps and irregularities on it than there are on the concrete.
Explanation:
Frictional force is a force that is exerted between two surfaces in contact with each other. Frictional force always opposes the direction of relative motion of the two surfaces: for instance, for a ball moving along a surface, the force of friction exerted by the surface on the ball points opposite to the direction of motion of the ball.
The magnitude of the frictional force for a ball moving on a flat surface is given by

where
is the coefficient of friction
m is the mass of the ball
g is the acceleration of gravity
The value of
depends on the type of surface involved. In particular, a smooth surface has a smaller value of
, while a rough surface will have a bigger value. In this case, we are comparing a smooth metal surface with concrete: since the metal surface has fewer bumps and irregularities than concrete, it has a smaller value of coefficient of friction, so it exerts less frictional force than concrete.