Answer:
b+6
Problem:
If the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
Step-by-step explanation:
We are given (b+c)/2=8 and d=3b-4.
We are asked to find (c+d)/2 in terms of variable, b.
We need to first solve (b+c)/2=8 for c.
Multiply both sides by 2: b+c=16.
Subtract b on both sides: c=16-b
Now let's plug in c=16-b and d=3b-4 into (c+d)/2:
([16-b]+[3b-4])/2
Combine like terms:
(12+2b)/2
Divide top and bottom by 2:
(6+1b)/1
Multiplicative identity property applied:
(6+b)/1
Anything divided by 1 is that anything:
(6+b)
6+b
b+6
Step-by-step explanation:
![674 \times 673 \times 142 \div 3 \\ \\ = 674 \times 673 \times 142 \times \frac{1}{3} \\ \\ = 64,411,484\times \frac{1}{3} \\ \\ = 21,470,494.7 \\](https://tex.z-dn.net/?f=674%20%5Ctimes%20673%20%5Ctimes%20142%20%5Cdiv%203%20%5C%5C%20%20%5C%5C%20%3D%20%20674%20%5Ctimes%20673%20%5Ctimes%20142%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%2064%2C411%2C484%5Ctimes%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%20%5C%5C%20%20%5C%5C%20%20%3D%2021%2C470%2C494.7%20%5C%5C%20)
The answer to the question is d
Pretty sure the answer is d brodie