B=h+4, m=h-2 now we are told
b+h+m=11, using b and m found above in this equation gives us:
h+4+h+h-2=11
3h+2=11
3h=9
h=3 and since b=h+4, m=h-2
historical=3, biography=7, mystery=1
Answer:
a. cosθ = ¹/₂[e^jθ + e^(-jθ)] b. sinθ = ¹/₂[e^jθ - e^(-jθ)]
Step-by-step explanation:
a.We know that
e^jθ = cosθ + jsinθ and
e^(-jθ) = cosθ - jsinθ
Adding both equations, we have
e^jθ = cosθ + jsinθ
+
e^(-jθ) = cosθ - jsinθ
e^jθ + e^(-jθ) = cosθ + cosθ + jsinθ - jsinθ
Simplifying, we have
e^jθ + e^(-jθ) = 2cosθ
dividing through by 2 we have
cosθ = ¹/₂[e^jθ + e^(-jθ)]
b. We know that
e^jθ = cosθ + jsinθ and
e^(-jθ) = cosθ - jsinθ
Subtracting both equations, we have
e^jθ = cosθ + jsinθ
-
e^(-jθ) = cosθ - jsinθ
e^jθ + e^(-jθ) = cosθ - cosθ + jsinθ - (-jsinθ)
Simplifying, we have
e^jθ - e^(-jθ) = 2jsinθ
dividing through by 2 we have
sinθ = ¹/₂[e^jθ - e^(-jθ)]
The answer is 2/11 in simplest form
The <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em>Recall:</em>
- Based on the Side-Side-Side Congruence Theorem, (SSS), two triangles can be said to be congruent to each other if they have three pairs of congruent sides.
Thus, in the two triangles given, the two triangles has:
- Two pairs of congruent sides - HI ≅ ML and IJ ≅ MN
Therefore, an <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em />
Learn more about SSS Congruence Theorem on:
brainly.com/question/4280133
The diameter of a circle is twice the size of the radius of that circle. Because the radius is 3.5 centimeters, the diameter is two times that, which is 7 centimeters. Hope this helps! And PLEASE pick me as brainliest!!!! Please