1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
3 years ago
15

If the average (arithmetic mean) of 10,20,30,40, and x is 60, what is the value of x​

Mathematics
1 answer:
Lilit [14]3 years ago
8 0

60 =  (10 + 20 + 30 + 40 + x)/5

300 = 100 + x

x = 200

Answer: 200

You might be interested in
An investment grows by 22% over a 5 year period. What is its effective annual percent growth rate
iren2701 [21]
Since annual means per year, then you need to divide 22 by 5.

5 / 22 = 4.4

Now lets check our work.

4.4 x 5 = 22
3 0
3 years ago
Can someone help me with this problem?????
snow_tiger [21]

The perimeter is composed of two straight parts and two semicircles. We can use this to break down the problem.

We can find the straight parts easily. They are given in the problem.

straight parts: 82 x 2 = 164 m

The two semicircles make a circle. We just have to find the circumference of a circle with a diameter of 66 cm to get the length of the semicircles.

semicircles: 2(π)(66/2) = 66(3.14) = 207.24 m

answer: 164+207.24 = 371.24 m

7 0
3 years ago
Number 31 please guys!!!!!
monitta
the answer is c
this is because, first you use the distributive property. Multiply 'y' by the number 3 and you get 3y
then multiply 3 by the number 4.
you get 12
subtract 7 from 12 and you get 5

So, the expression becomes 3y+5


Hope this helped!!

3 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Translate the sentence into an equation.
erastovalidia [21]

Answer:

5(x+3)=2

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • The area of triangle JKL is 32 cm². What is the area of the parallelogram JKLM? A. 16 cm² B. 32 cm² C. 64 cm² D. 128 cm²
    9·2 answers
  • Triangle A B C is shown. Angle A C B is a right angle. The length of hypotenuse A B is 12 centimeters, the length of C B is 9.8
    8·2 answers
  • Does the equation y=14x show a proportional relationship between x and​ y? Explain.
    15·1 answer
  • WHOEVER CAN SOLVE THIS IS A CRAZY GENIUS!!
    15·1 answer
  • A right triangle has side lengths 7, 24, and 25 as shown below.
    6·1 answer
  • What number is 80% of 65%
    12·1 answer
  • Patrick receives 14 phone calls in a week. Andrew receives 10 phone calls. David receives 8 phone calls. George receives 11 phon
    9·1 answer
  • There are 240 calories in 5 ounces of a type of ice cream. How many calories are in 8 ounces of that ice cream?
    15·2 answers
  • Which of these best describes Pi?
    13·1 answer
  • The reflection of a point P across a line m is the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!