Answer:
The perimeter of the drawing: 18 inches
The perimeter of the actual flower bed: 540 inches
If they were multiplied by 24 instead the actual perimeter of the flower bed would be 432 inches. The effect is that it decreases by 108 inches.
Step-by-step explanation:
Taking the 4 inches and 5 inches and multiplying them by 30 gets 120 by 150. If its a rectangle we will add together all 4 sides to get the perimeter of the actual one.
The first one is negative six and the second one is positive six
Answer:
a. 0.0368
b. 0.99992131
c. 0.2039
d. 0.0048
e. 0.6533
Step-by-step explanation:
Let the probability of obtaining a head be p = 65% = 13/20 = 0.65. The probability of not obtaining a head is q = 1 - p = 1 -13/20 = 7/20 = 0.35
Since this is a binomial probability, we use a binomial probability.
a. The probability of obtaining 11 heads is ¹²C₁₁p¹¹q¹ = 12 × (0.65)¹¹(0.35) = 0.0368
b. Probability of 2 or more heads P(x ≥ 2) is
P(x ≥ 2) = 1 - P(x ≤ 1)
Now P(x ≤ 1) = P(0) + P(1)
= ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹
= (0.65)⁰(0.35)¹² + 12(0.65)¹(0.35)¹¹
= 0.000003379 + 0.00007531
= 0.0007869
P(x ≥ 2) = 1 - P(x ≤ 1)
= 1 - 0.00007869
= 0.99992131
c. The probability of obtaining 7 heads is ¹²C₇p⁷q⁵ = 792(0.65)⁷(0.35)⁵ = 0.2039
d. The probability of obtaining 7 heads is ¹²C₉q⁹p³ = 220(0.65)³(0.35)⁹ = 0.0048
e. Probability of 8 heads or less P(x ≤ 8) = ¹²C₀p⁰q¹² + ¹²C₁p¹q¹¹ + ¹²C₂p²q¹⁰ + ¹²C₃p³q⁹ + ¹²C₄p⁴q⁸ + ¹²C₅p⁵q⁷ + ¹²C₆p⁶q⁶ + ¹²C₇p⁷q⁵ + ¹²C₈p⁸q⁴
= = ¹²C₀(0.65)⁰(0.35)¹² + ¹²C₁(0.65)¹(0.35)¹¹ + ¹²C₂(0.65)²(0.35)¹⁰ + ¹²C₃(0.65)³(0.35)⁹ + ¹²C₄(0.65)⁴(0.35)⁸ + ¹²C₅(0.65)⁵(0.35)⁷ + ¹²C₆(0.65)⁶(0.35)⁶ + ¹²C₇(0.65)⁷(0.35)⁵ + ¹²C₈(0.65)⁸(0.35)⁴
= 0.000003379 + 0.00007531 + 0.0007692 + 0.004762 + 0.01990 + 0.05912 + 0.1281 + 0.2039 + 0.2367
= 0.6533
Answer: |p-72% |≤ 4%
Step-by-step explanation:
Let p be the population proportion.
The absolute inequality about p using an absolute value inequality.:
, where E = margin of error,
= sample proportion
Given: A poll result of 72% with a margin of error of 4% indicates that p is most likely to be between 68% and 76% .
|p-72% |≤ 4%
⇒ 72% - 4% ≤ p ≤ 72% +4%
⇒ 68% ≤ p ≤ 76%.
i.e. p is most likely to be between 68% and 76% (.