Answer:
-40
Step-by-step explanation:
-48 + 37 - 28 - 1
-11-29
-40
this is neither a geometric nor an arithmetic sequence
add 4, add 6, add 8
Since you have options, I would guess and check
n=2
2^2+2 =6
3(2)-1 = 5 no
(2+1) (2+2) =12 no
Choice A
Answer:
48 ounces
Step-by-step explanation:
1,248 divided by 26 is 48
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![5m^2e^{mt}+3me^{mt}-2e^{mt}=0\\\\\Rightarrow (5m^2+3y-2)e^{mt}=0\\\\\Rightarrow 5m^2+3m-2=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow 5m^2+5m-2m-2=0\\\\\Rightarrow 5m(m+1)-2(m+1)=0\\\\\Rightarrow (m+1)(5m-1)=0\\\\\Rightarrow m+1=0,~~~~~5m-1=0\\\\\Rightarrow m=-1,~\dfrac{1}{5}.](https://tex.z-dn.net/?f=5m%5E2e%5E%7Bmt%7D%2B3me%5E%7Bmt%7D-2e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%285m%5E2%2B3y-2%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B3m-2%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B5m-2m-2%3D0%5C%5C%5C%5C%5CRightarrow%205m%28m%2B1%29-2%28m%2B1%29%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B1%29%285m-1%29%3D0%5C%5C%5C%5C%5CRightarrow%20m%2B1%3D0%2C~~~~~5m-1%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-1%2C~%5Cdfrac%7B1%7D%7B5%7D.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and
![y^\prime(0)=2.8\\\\\Rightarrow -A+\dfrac{B}{5}=2.8\\\\\Rightarrow -5A+B=14\\\\\Rightarrow -5A-A=14~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Uisng equation (ii)}]\\\\\Rightarrow -6A=14\\\\\Rightarrow A=-\dfrac{14}{6}\\\\\Rightarrow A=-\dfrac{7}{3}.](https://tex.z-dn.net/?f=y%5E%5Cprime%280%29%3D2.8%5C%5C%5C%5C%5CRightarrow%20-A%2B%5Cdfrac%7BB%7D%7B5%7D%3D2.8%5C%5C%5C%5C%5CRightarrow%20-5A%2BB%3D14%5C%5C%5C%5C%5CRightarrow%20-5A-A%3D14~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7BUisng%20equation%20%28ii%29%7D%5D%5C%5C%5C%5C%5CRightarrow%20-6A%3D14%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B14%7D%7B6%7D%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B7%7D%7B3%7D.)
From equation (ii), we get

Thus, the required solution is

<u>Answer:</u>
Consistent and dependent
<u>Step-by-step explanation:</u>
We are given the following equation:
1. 
2. 
3. 
For equation 1 and 3, if we take out the common factor (3 and 4 respectively) out of it then we are left with
which is the same as the equation number 2.
There is at least one set of the values for the unknowns that satisfies every equation in the system and since there is one solution for each of these equations, this system of equations is consistent and dependent.