The value of the expression in the form a(x+b)^2 is 1.5(x+2)^2 - 4
<h3>Vertex Form of a quadratic expression</h3>
Given the quadratic expressions
1.5x^2+6x+......
1.5(x^2 + 4x)
Using the completing the square method
The coefficient of x = 4
Half of the coefficient = 4/2 = 2
The square of the result = 2^2 = 4
The equation is expressed as:
f(x) = 1.5(x^2+4x+ 4) - 4
f(x) = 1.5(x+2)^2 - 4
Hence the value of the expression in the form a(x+b)^2 is 1.5(x+2)^2 - 4
Learn more on completing the square method here: brainly.com/question/1596209
The lines that intersect is B
Find m∠BOC, if m∠MOP = 110°.
Answer:
m∠BOC= 40 degrees
Step-by-step explanation:
A diagram has been drawn and attached below.
- OM bisects AOB into angles x and x respectively
- ON bisects ∠BOC into angles y and y respectively
- OP bisects ∠COD into angles z and z respectively.
Since ∠AOD is a straight line
x+x+y+y+z+z=180 degrees

We are given that:
m∠MOP = 110°.
From the diagram
∠MOP=x+2y+z
Therefore:
x+2y+z=110°.
Solving simultaneously by subtraction

x+2y+z=110°.
We obtain:
x+z=70°
Since we are required to find ∠BOC
∠BOC=2y
Therefore from x+2y+z=110° (since x+z=70°)
70+2y=110
2y=110-70
2y=40
Therefore:
m∠BOC= 40 degrees
Answer:
Step-by-step explanation:
you need more information bu the stem-leaf is meant to split the number