1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
3 years ago
10

Factor completely 25x^2-36

Mathematics
1 answer:
Oxana [17]3 years ago
5 0

Rewrite it in the form; a^2 - b^2, where a = 5x and b = 6

(5x)^2 - 6^2

Use the Difference of Squares: a^2 - b^2 = (a + b)(a - b)

<u>(5x + 6)(5x - 6) </u>

You might be interested in
Write y^2 - y^4 without exponents
True [87]

Answer:

y•y-y•y•y•y

Step-by-step explanation:

y^2 is equal to y•y and y^4 is equal to y•y•y•y.

7 0
3 years ago
HELPPPPP PLEASEEEE!!!!!Find the Area of the Rectangle:
tangare [24]

Answer:

62

Step-by-step explanation:

IM NOT SURE I THINK BUT hope this helps :)

7 0
3 years ago
Which best explains whether a triangle with side lengths 2 in., 5in., and 4in. is an acute triangle?
Amiraneli [1.4K]
Yes,  I would say so, or a right triangle.
7 0
3 years ago
Let z denote a random variable that has a standard normal distribution. Determine each of the probabilities below. (Round all an
Gelneren [198K]

Answer:

(a) P (<em>Z</em> < 2.36) = 0.9909                    (b) P (<em>Z</em> > 2.36) = 0.0091

(c) P (<em>Z</em> < -1.22) = 0.1112                      (d) P (1.13 < <em>Z</em> > 3.35)  = 0.1288

(e) P (-0.77< <em>Z</em> > -0.55)  = 0.0705       (f) P (<em>Z</em> > 3) = 0.0014

(g) P (<em>Z</em> > -3.28) = 0.9995                   (h) P (<em>Z</em> < 4.98) = 0.9999.

Step-by-step explanation:

Let us consider a random variable, X \sim N (\mu, \sigma^{2}), then Z=\frac{X-\mu}{\sigma}, is a standard normal variate with mean, E (<em>Z</em>) = 0 and Var (<em>Z</em>) = 1. That is, Z \sim N (0, 1).

In statistics, a standardized score is the number of standard deviations an observation or data point is above the mean.  The <em>z</em>-scores are standardized scores.

The distribution of these <em>z</em>-scores is known as the standard normal distribution.

(a)

Compute the value of P (<em>Z</em> < 2.36) as follows:

P (<em>Z</em> < 2.36) = 0.99086

                   ≈ 0.9909

Thus, the value of P (<em>Z</em> < 2.36) is 0.9909.

(b)

Compute the value of P (<em>Z</em> > 2.36) as follows:

P (<em>Z</em> > 2.36) = 1 - P (<em>Z</em> < 2.36)

                   = 1 - 0.99086

                   = 0.00914

                   ≈ 0.0091

Thus, the value of P (<em>Z</em> > 2.36) is 0.0091.

(c)

Compute the value of P (<em>Z</em> < -1.22) as follows:

P (<em>Z</em> < -1.22) = 0.11123

                   ≈ 0.1112

Thus, the value of P (<em>Z</em> < -1.22) is 0.1112.

(d)

Compute the value of P (1.13 < <em>Z</em> > 3.35) as follows:

P (1.13 < <em>Z</em> > 3.35) = P (<em>Z</em> < 3.35) - P (<em>Z</em> < 1.13)

                            = 0.99960 - 0.87076

                            = 0.12884

                            ≈ 0.1288

Thus, the value of P (1.13 < <em>Z</em> > 3.35)  is 0.1288.

(e)

Compute the value of P (-0.77< <em>Z</em> > -0.55) as follows:

P (-0.77< <em>Z</em> > -0.55) = P (<em>Z</em> < -0.55) - P (<em>Z</em> < -0.77)

                                = 0.29116 - 0.22065

                                = 0.07051

                                ≈ 0.0705

Thus, the value of P (-0.77< <em>Z</em> > -0.55)  is 0.0705.

(f)

Compute the value of P (<em>Z</em> > 3) as follows:

P (<em>Z</em> > 3) = 1 - P (<em>Z</em> < 3)

             = 1 - 0.99865

             = 0.00135

             ≈ 0.0014

Thus, the value of P (<em>Z</em> > 3) is 0.0014.

(g)

Compute the value of P (<em>Z</em> > -3.28) as follows:

P (<em>Z</em> > -3.28) = P (<em>Z</em> < 3.28)

                    = 0.99948

                    ≈ 0.9995

Thus, the value of P (<em>Z</em> > -3.28) is 0.9995.

(h)

Compute the value of P (<em>Z</em> < 4.98) as follows:

P (<em>Z</em> < 4.98) = 0.99999

                   ≈ 0.9999

Thus, the value of P (<em>Z</em> < 4.98) is 0.9999.

**Use the <em>z</em>-table for the probabilities.

3 0
3 years ago
The area of a rectangular plank is 4500 cm². The plank was broken into two pieces, one of which is a square and the other a rect
svp [43]

Answer:

Xs=30cm and As=900 cm^{2}

Step-by-step explanation:

At=As+Ar; A=b.h and At=4500 cm^{2}, then:  At=(x+120)x so

(x+120)x=4500, x^{2} +120x-4500=0 Applying cuadratic equation formula:\frac{120+-\sqrt{120^{2} -4.1.-4500} }{2} =-\frac{120+-\sqrt{14400+18000} }{2}= x1=30 and x2=-150, finally Xs=30cm, and As=900cm^{2}

3 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me with my homework please answer this correctly
    10·1 answer
  • Variable y varies directly with variable x, and y = 6 when x = 9.
    12·2 answers
  • The circumference of a tennis ball is 21<br>cm. How many inches is the circumference?​
    14·2 answers
  • Caroline works as a barista at Starbucks that pays $11 per hour. She needs to have $84 to cover her weekly
    9·2 answers
  • Zareena has 24 minutes to work on her math homework and each problem is taking g her 2/3 of a minute on average to complete whic
    12·1 answer
  • Someone help me plz!!
    9·1 answer
  • What is the total area of this polygon? O 77 sq cm O 86 sq cm 96 sq cm O 108 sq cm​
    9·1 answer
  • What is the solution to the equation?
    7·2 answers
  • DP
    7·1 answer
  • The probability that it will rain on Thursday is 67%. What is the probability that it won’t rain on Thursday? Express your answe
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!