Answer:
Your answer is A.
Step-by-step explanation:
Looking at the graphing two-equation: y = x^3 -3 and y = x^2+6 are up there, it can help us determine the limit of domain.
The dot is the x<=2 for equation y=x^3-3.
The circle is x>2 for equation y=x^2+6
Answer:
2.884499
Step-by-step explanation:
a) For x = 27:
z = 27-28/2 = -0.5
For x = 31:
z = 31-38/2 = 1.5
From the normal distribution table, P(27 < x < 31) = P(-0.5 < z < 1.5) = P(z < 1.5) - P(z < -0.5) = 0.9332 - 0.3085 = 62.47%
b) For x > 30.2:
z = 30.2-28/2 = 1.1
From the normal distribution table, P(x > 30.2) = P(z > 1.1) = 1 - P(z > 1.1) = 1 - 0.8643 = 13.57%
Answer:
(x) = 2(1/6)^x
Step-by-step explanation:
To easily solve this problem, we can graph each option using a graphing calculator, or any equation plotting tool.
Case 1
f(x) = 2(6)^x
Case 2
f(x) = 1/2*(6)^x
Case 3
f(x) = 2(1/6)^x
Case 4
f(x) = 1/2*(1/6)^x
By looking at the pictures below, we can tell that the correct option is
Case 3
f(x) = 2(1/6)^x
Since the stretch is done by a factor of 2
Answer:
I don't understand your question