Answer:
No, because it fails the vertical line test ⇒ B
Step-by-step explanation:
To check if the graph represents a function or not, use the vertical line test
<em>Vertical line test:</em> <em>Draw a vertical line to cuts the graph in different positions, </em>
- <em>if the line cuts the graph at just </em><em>one point in all positions</em><em>, then the graph </em><em>represents a function</em>
- <em>if the line cuts the graph at </em><em>more than one point</em><em> </em><em>in any position</em><em>, then the graph </em><em>does not represent a function </em>
In the given figure
→ Draw vertical line passes through points 2, 6, 7 to cuts the graph
∵ The vertical line at x = 2 cuts the graph at two points
∵ The vertical line at x = 6 cuts the graph at two points
∵ The vertical line at x = 7 cuts the graph at one point
→ That means the vertical line cuts the graph at more than 1 point
in some positions
∴ The graph does not represent a function because it fails the vertical
line test
Answer:
y = -(3/7)x + 2
Step-by-step explanation:
(see attached)
recall that the slope-intercept form of a linear equation is
y = mx + b
where m = slope = given as -(3/7)
and b = y-intercept = 2
substituting these values into the eqation:
y = mx + b
y = -(3/7)x + 2
First, we need to transform the equation into its standard form (x - h)²=4p(y - k).
Using completing the square method:
y = -14x² - 2x - 2
y = -14(x² + 2x/14) - 2
y = -14(x² + 2x/14 + (2/28)²) -2 + (2/28)²
y = -14(x + 1/14)² - 391/196
-1/14(y + 391/196) = (x + 1/14)²
This is a vertical parabola and its focus <span>(h, k + p) is (-1/14, -391/196 + 1/56) = (-1/14, -775/392).
Or (-0.071,-1.977).</span>
Answer:

Step-by-step explanation: