1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
9

The midpoint of segment AB is (-7, 10) and endpoint A is located at (3, -1). Find the other endpoint B. Show all work.

Mathematics
1 answer:
dusya [7]3 years ago
6 0

Answer:

B(-17,21)

Step-by-step explanation:

The midpoint of two points is the average of the x coordinates and the average of the y coordinates.

Given

A(3, -1)

and we let the other end point B be B(x,y)

and midpoint is (-7,10)

So, the average of 3 and x is -7, and

the average of -1 and y is 10

We can solve for x first:

\frac{3+x}{2}=-7\\3+x=2*-7\\3+x=-14\\x=-14-3\\x=-17

and now solving for y:

\frac{-1+y}{2}=10\\-1+y=2*10\\-1+y=20\\y=20+1\\y=21

So, the other point B is:

B(-17,21)

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
What is 7/8 divided by 3/4
Eva8 [605]
The answer i got was 0.07291666666
3 0
3 years ago
Read 2 more answers
The selling price of the Robertsons family house dropped from $500,000 to $250,000. What was the percent decrease in the value o
Alexus [3.1K]

Answer:

50%

Step-by-step explanation:

You can literally do it mentally lol

 $500,000

- <u>$250,000</u>

 $250,000

so by common sense, it's 50%

Hope it helped!

5 0
2 years ago
Read 2 more answers
Lashonda sells beaded necklaces. Each large necklace sells for $6.60 and each small necklace sells for $4.90 . How much will she
xxMikexx [17]
46.2 dollars for the large necklaces and 14 dollars and seventy cents for the small necklaces therefore she will earn $60.9
5 0
3 years ago
Which quadratic equation has solutions x=8 and x=−1?
andrezito [222]
There are two ways you can do this

Using the formula


{x}^{2}  - (sum \: of \: roots)x + poduct \: of \: roots = 0

{x}^{2}  - (8+-1)x +  - 1 \times 8 = 0


{x}^{2}  - 7x  - 8 = 0


Working backwards


x = 8 \: or \: x =  - 1
\Rightarrow x-8=0  \: or  \: x+1=0

\Rightarrow (x-8)(x + 1)=0
\Rightarrow  {x}^{2}   + x -8x - 8 = 0
\Rightarrow  {x}^{2}  - 7x - 8 = 0
7 0
4 years ago
Other questions:
  • Simplify.
    15·1 answer
  • Write an equation that represents the line. ​
    8·1 answer
  • an elevator traveled up to the 9th floor and then down to the third floor. how many floors did the elevator travel down​
    8·1 answer
  • When Lydia runs in a cross country meet, her arm swings rhythmically according to the model
    12·1 answer
  • What equation in slope intercept form represents the line that passes through the two points (2,5),(9,2)
    15·2 answers
  • Evaluate |a| - |b|, given a = 5, b = -3, and c = -2. A.2 B.3 C.7 D.8
    8·1 answer
  • A university found that 30% of its students withdraw without completing the introductory statistics course. Assume that 20 stude
    10·1 answer
  • Write the sentence as an equation.<br> 220 equals a minus 323
    8·1 answer
  • How to work out surface area of cubes
    11·1 answer
  • What is x 4x+2 plz help
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!