Plug in 2 for x. f(20=2-51 = -49
Yes, we can obtain a diagonal matrix by multiplying two non diagonal matrix.
Consider the matrix multiplication below
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \left[\begin{array}{cc}e&f\\g&h\end{array}\right] = \left[\begin{array}{cc}a e+b g&a f+b h\\c e+d g&c f+d h\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%20e%2Bb%20g%26a%20f%2Bb%20h%5C%5Cc%20e%2Bd%20g%26c%20f%2Bd%20h%5Cend%7Barray%7D%5Cright%5D%20)
For the product to be a diagonal matrix,
a f + b h = 0 ⇒ a f = -b h
and c e + d g = 0 ⇒ c e = -d g
Consider the following sets of values

The the matrix product becomes:
![\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}\frac{1}{3}&-1\\-\frac{1}{4}&\frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{1}{3}-\frac{1}{2}&-1+1\\1-1&-3+2\end{array}\right]= \left[\begin{array}{cc}-\frac{1}{6}&0\\0&-1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D%26-1%5C%5C-%5Cfrac%7B1%7D%7B4%7D%26%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B2%7D%26-1%2B1%5C%5C1-1%26-3%2B2%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5Cfrac%7B1%7D%7B6%7D%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D)
Thus, as can be seen we can obtain a diagonal matrix that is a product of non diagonal matrices.
Answer:
A
Step-by-step explanation:
using the rule :
=
+ 7
sequence A with a₁ = 11
a₂ = a₁ + 7 = 11 + 7 = 18
a₃ = a₂ + 7 = 18 + 7 = 25
a₄ = a₃ + 7 = 25 + 7 = 32
sequence A is generated using the rule
sequence B with a₁ = 17
a₂ = a₁ + 7 = 17 + 7 = 24
a₃ = a₂ + 7 = 24 + 7 = 31
a₄ = a₃ + 7 = 31 + 7 = 38
sequence B is not generated using the rule
sequence C with a₁ = - 15
a₂ = - 15 + 7 = - 8
a₃ = a₂ + 7 = - 8 + 7 = - 1
a₄ = a₃ + 7 = - 1 + 7 = 6
sequence C is not generated using the rule
sequence D with a₁ = - 9
a₂ = a₁ + 7 = - 9 + 7 = - 2
a₃ = a₂ + 7 = - 2 + 7 = 5
a₄ = a₃ + 7 = 5 + 7 = 12
sequence D is not generated using the rule