Answer:
5
Step-by-step explanation:
<h3>
Answer: cos(76)</h3>
=========================================================
Explanation:
The original expression is of the pattern cos cos + sin sin. This pattern matches the second identity in the hint. Specifically, we'll say the following:
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
cos(A)cos(B) + sin(A)sin(B) = cos(A - B)
cos(94)cos(18) + sin(94)sin(18) = cos(94 - 18)
cos(94)cos(18) + sin(94)sin(18) = cos(76)
----------
We can verify this by use of a calculator. Make sure your calculator is in degree mode.
- cos(94)cos(18) + sin(94)sin(18) = 0.24192
- cos(76) = 0.24192
Both expressions give the same decimal approximation, so this helps confirm the two expressions are equal. You could also use the idea that if x = y, then x-y = 0. Through this method, you'll subtract the left and right hand sides and you should get (very close to) zero.
Step-by-step explanation:
<em><u>5</u></em><em><u>x</u></em><em><u>+</u></em><em><u>4</u></em><em><u><</u></em><em><u>1</u></em><em><u>6</u></em>
<em><u>or</u></em><em><u>,</u></em><em><u>5</u></em><em><u>x</u></em><em><u><</u></em><em><u>1</u></em><em><u>6</u></em><em><u>-4</u></em>
<em><u>or</u></em><em><u>,</u></em><em><u>5</u></em><em><u>x</u></em><em><u><</u></em><em><u>1</u></em><em><u>2</u></em>
<em><u>or</u></em><em><u>,</u></em><em><u>x</u></em><em><u><</u></em><em><u>12</u></em><em><u>÷</u></em><em><u>5</u></em>
<em><u>o</u></em><em><u>r</u></em><em><u>,</u></em><em><u>x</u></em><em><u><</u></em><em><u>1</u></em><em><u>2</u></em><em><u>/</u></em><em><u>5</u></em>
<em><u>or</u></em><em><u>,</u></em><em><u>x</u></em><em><u><</u></em><em><u>2</u></em><em><u>.</u></em><em><u>4</u></em>
<em><u>:</u></em><em><u>.</u></em><em><u>x</u></em><em><u><</u></em><em><u>2</u></em><em><u>.</u></em><em><u>4</u></em>
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.

Answer: x=12
Step-by-step explanation:

The sum of the angles of the triangle is 180°:

Divide both parts of the equation by 4:
