well, we know it's a rectangle, so that means the sides JK = IL and JI = KL, so
![\stackrel{JK}{3x+21}~~ = ~~\stackrel{IL}{6y}\implies 3(x+7)=6y\implies x+7=\cfrac{6y}{3} \\\\\\ x+7=2y\implies \boxed{x=2y-7} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{JI}{6y-6}~~ = ~~\stackrel{KL}{2x+20}\implies 6(y-1)=2(x+10)\implies \cfrac{6(y-1)}{2}=x+10 \\\\\\ 3(y-1)=x+10\implies 3y-3=x+10\implies \stackrel{\textit{substituting from the 1st equation}}{3y-3=(2y-7)+10} \\\\\\ 3y-3=2y+3\implies y-3=3\implies \blacksquare~~ y=6 ~~\blacksquare ~\hfill \blacksquare~~ \stackrel{2(6)~~ - ~~7}{x=5} ~~\blacksquare](https://tex.z-dn.net/?f=%5Cstackrel%7BJK%7D%7B3x%2B21%7D~~%20%3D%20~~%5Cstackrel%7BIL%7D%7B6y%7D%5Cimplies%203%28x%2B7%29%3D6y%5Cimplies%20x%2B7%3D%5Ccfrac%7B6y%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20x%2B7%3D2y%5Cimplies%20%5Cboxed%7Bx%3D2y-7%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BJI%7D%7B6y-6%7D~~%20%3D%20~~%5Cstackrel%7BKL%7D%7B2x%2B20%7D%5Cimplies%206%28y-1%29%3D2%28x%2B10%29%5Cimplies%20%5Ccfrac%7B6%28y-1%29%7D%7B2%7D%3Dx%2B10%20%5C%5C%5C%5C%5C%5C%203%28y-1%29%3Dx%2B10%5Cimplies%203y-3%3Dx%2B10%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20from%20the%201st%20equation%7D%7D%7B3y-3%3D%282y-7%29%2B10%7D%20%5C%5C%5C%5C%5C%5C%203y-3%3D2y%2B3%5Cimplies%20y-3%3D3%5Cimplies%20%5Cblacksquare~~%20y%3D6%20~~%5Cblacksquare%20~%5Chfill%20%5Cblacksquare~~%20%5Cstackrel%7B2%286%29~~%20-%20~~7%7D%7Bx%3D5%7D%20~~%5Cblacksquare)
Answer:
To most closely estimate the difference, I would round 62,980 to the nearest thousand, so it will be 63,000. That is because when rounding, 63,000 is large enough so that adding will be easy, and 62,980 is relatively close to 63,000.
I would round 49,625 to the nearest thousand, since it would make the subtraction easier and 49,625 is only 375 units away from 50,000.
63,000 - 50,000 = about 13,000.
Hope this helps!
Answer:
buddy its 2 cars :;)))
Step-by-step explanation:
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
42 ÷ 63
63 -> 420
63x6=378
420-378=42
63->420
So, how many times does 63 go into 42? Well, it doesn't. So put down a zero on your paper, and then a decimal. So if we add a zero onto 42, it becomes 420. Well, 420 is divisible by 63. In fact, 63 goes into 420 6 times, making a total of 378. 420-378 = 42. Then the process begins again. So you've got a 0.6, and that six just keeps on repeating. On paper, you're gonna wanna put a dash over the six to show that it's repeating.
Anyways, the answer is .66 repeating.