If i'm not wrong its distributing property of addition. <span />
2x-8(-7-x)=6
2x+56+8x=6
10x=-50
x=-5
y=-7-(-5)
y=-2
(-5,-2)
Answer:
$7995.85
Step-by-step explanation:
We will use simple interest formula to solve our given problem.
, where,
A = Amount after t years,
P = Principal amount,
r = Annual interest rate in decimal form,
t = Time in years.








Therefore, Judy will will pay back on January 20: <u>$7995.85</u>.
A dilation is a transformation, with center O and a scale factor of k
that is not zero, that maps O to itself and any other point P to P'.
The center O is a fixed point, P' is the image of P, points O, P and P'
are on the same line.
Thus, a dilation with centre O and a scale factor of k maps the original figure to the image in such a way that the<span>
distances from O to the vertices of the image are k times the distances
from O to the original figure. Also the size of the image are k times the
size of the original figure.
In the dilation of triangle TUV</span>, It is obvious that the image <span>T'U'V' is smaller than the original triangle TUV and hence the scale factor is less than 1.
</span>The ratio of the
distances from A to the vertices of the image T'U'V' to the distances
from A to the original triangle TUV is the scale factor.
The scale factor = 3.2 / 4.8 = 2/3
Answer:
Option B is correct.
Use the difference in sample means (10 and 8) in a hypothesis test for a difference in two population means.
Step-by-step Explanation:
The clear, complete table For this question is presented in the attached image to this solution.
It should be noted that For this question, the running coach wants to test if participating in weekly running clubs significantly improves the time to run a mile.
In the data setup, the mean time to run a mile in January for those that participate in weekly running clubs and those that do not was provided.
The mean time to run a mile in June too is provided for those that participate in weekly running clubs and those that do not.
Then the difference in the mean time to run a mile in January and June for the two classes (those that participate in weekly running clubs and those that do not) is also provided.
Since, the aim of the running coach is to test if participating in weekly running clubs significantly improves the time to run a mile, so, it is logical that it is the improvements in running times for the two groups that should be compared.
Hence, we should use the difference in sample means (10 and 8) in a hypothesis test for a difference in two population means.
Hope this Helps!!!