Answer:
Overall reaction equation:
2NO (g) + O2(g) ---------> 2NO2(g)
Overall rate= k1 [NO]^2
Explanation:
Overall reaction equation:
2NO (g) + O2(g) ---------> 2NO2(g)
The overall reaction equation is obtained by adding the two equations. This now gives the actual overall equations when intermediates must have been cancelled out.
Since k1<<k2 which me as that the first step is much slower than the second step, then the first step is the rate determining step, being the slowest step in the non elementary reaction sequence.
Therefore overall rate;
Overall rate= k1 [NO]^2
18 is 50% of 36
Like 36 divided by 2
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer:
Explanation:
Given parameters:
Concentration of H₃O⁺ = 5.6 x 10⁻²M
Solution:
To solve for the concentration of H₃O⁺ in the solution, we simply use the expression below:
pH = -log₁₀[H₃O⁺]
where [H₃O⁺] = 5.6 x 10⁻²M is the concentration of H₃O⁺
pH = -log₁₀[5.6 x 10⁻²] = - x -1.25 = 1.25
Answer:
C) quartz
Explanation:
Quartz is a common mineral. Also, quartz isn't a metallic substance. I'm hoping that this helps :)