The answer to your question is 40° because freezing temp for a liquid is 32°
molar mass = (22.99) + (1.01) + (12.01) + 3(16.00)
molar mass = 84.01 g/mol
//
(508g)(1 mol/84.01 g) = 6.0
There are 6.0 moles of sodium bicarbonate
Answer:
0.11mole
Explanation:
Let us assume that the condition is at standard temperature and pressure(STP);
Given parameters:
Volume of water = 2.45L
Unknown:
Number of moles found in this volume of water = ?
Solution;
At STP;
Number of moles = 
Input the parameters and solve;
Number of moles of water =
= 0.11mole
The number of moles of water found is 0.11mole
<span>The movement of particles within a solid is extremely slow when compared to that of a gas. It is also significantly slower in movement than that of the movement found within the particles of liquid. The more movement present and the faster the movement of the particles the more space will be present between each particle. This causes the material to spread out as they become less densely packed within a solid material.</span>
<span>a large amount of energy is released when water dissociates into oppositely charged ions.</span>