Answer:
142.92
Step-by-step explanation:
Answer:

Step-by-step explanation:
<h3> Reciprocal:</h3>

<h3>Additive inverse:</h3>

Now multiply,


If h moves the graph left or right,

(moves left)

(moves right)
If a vertical stretch by a factor of |h|, then

If h moves the graph up or down,

(moves up)

(moves down)

and h = 1
I suspect you meant
"How many numbers between 1 and 100 (inclusive) are divisible by 10 or 7?"
• Count the multiples of 10:
⌊100/10⌋ = ⌊10⌋ = 10
• Count the multiples of 7:
⌊100/7⌋ ≈ ⌊14.2857⌋ = 14
• Count the multiples of the LCM of 7 and 10. These numbers are coprime, so LCM(7, 10) = 7•10 = 70, and
⌊100/70⌋ ≈ ⌊1.42857⌋ = 1
(where ⌊<em>x</em>⌋ denotes the "floor" of <em>x</em>, meaning the largest integer that is smaller than <em>x</em>)
Then using the inclusion/exclusion principle, there are
10 + 14 - 1 = 23
numbers in the range 1-100 that are divisible by 10 or 7. In other words, add up the multiples of both 10 and 7, then subtract the common multiples, which are multiples of the LCM.