Answer:40
Step-by-step explanation:
dividing 1200 by 600 is 2
so you would do the same for 80
Answer:
The length of segment QM' = 6
Step-by-step explanation:
Given:
Q is the center of dilation
Pre-image (original image) = segment LM
New image = segment L'M'
The length of LQ = 4
The length of QM = 3
The length of LL' = 4
The original image was dilated with scale factor = 2
QM' = ?
To determine segment QM', first we would draw the diagram obtained from the given information.
Find attached the diagram
When a figure is dilated, we would have similar shape in thus cars similar triangles.
Segment L'M' = scale factor × length of LM
Let LM = x
L'M' = 2x
Using similar triangles theorem, ratio of their corresponding sides are equal.
QM/LM = QM'/L'M'
3/x = QM'/2x
6x = QM' × x
Q'M' = 6
The length of segment QM' = 6
The answer is -3 because mathematically -15 divided by 3 equals -3
In this problem you use cosine because you know the hypotenuse and you want to know the adjacent side of the triangle. So in your calculator you would input cos(52). Then you would multiply that answer with the hypotenuse side. So your equation would be this: cos(52) x 13