1 and 4 will be the expression that makes the equatio. true for all values of x to prove i have done it in the picture attached in this message
All triangles add up to 180 degrees. Since sines can't be a negative, you need to add -130 to 180. The answer to this question would be sine 50 degrees.
Answer:
D if car's length is 180 and not 108
Step-by-step explanation:
Truck is 75% longer than the car implies that the length of the truck is 175% (100+75 = 175) of the length of the car.
175/100 × 108
= 189 inches
None of the above
If we take the car's length to be 180 inches, then
175/100 × 180 = 315 inches
I think it’s C but I’m not so sure it’s been a while
Answer: There will enough to paint the outside of a typical spherical water tower.
Step-by-step explanation:
1. Solve for the radius r from the formula for calculate the volume of a sphere. as following:
![V=\frac{4}{3}r^{3}\pi\\\frac{3V}{4\pi}=r^{3}\\r=\sqrt[3]{\frac{3V}{4\pi}}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7Dr%5E%7B3%7D%5Cpi%5C%5C%5Cfrac%7B3V%7D%7B4%5Cpi%7D%3Dr%5E%7B3%7D%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D)
2. Substitute values:
![r=\sqrt[3]{\frac{3(66,840.28ft^{3})}{4\pi}}=25.17ft](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%2866%2C840.28ft%5E%7B3%7D%29%7D%7B4%5Cpi%7D%7D%3D25.17ft)
3. Substitute the value of the radius into the equation fo calculate the surface area of a sphere, then you obtain that the surface area of a typical spherical water tower is:

3. If a city has 25 gallons of paint available and one gallon of paint covers 400 square feet of surface area, you must multiply 25 by 400 square feet to know if there will be enough to paint the outside of a typical spherical water tower.

As you can see, there will enough to paint the outside of a typical spherical water tower.