1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
9

Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =

11 b. x − y − z = 0 30x + 40y = 12 30x + 50z = 12 c. 4x1 + 2x2 + x3 + 5x4 = 0 3x1 + x2 + 4x3 + 7x4 = 1 2x1 + 3x2 + x3 + 6x4 = 1 3x1 + x2 + x3 + 3x4 = 4

Mathematics
2 answers:
lara [203]3 years ago
7 0

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Pavel [41]3 years ago
7 0

Answer:

(a) x1 = 11/13, x2 = 50/13, x3 = -17/13

(b) x = 54/235, y = 6/47, z = 24/235

(c) x1 = 22/9, x2 =164/9, x3 = 139/9, x4 = -37/3

Step-by-step explanation:

Gaussian Elimination Method was the matrix method used in solving the system of equations.

It is done by writing the equations given in an augmented form, this is shown in the attachment. The coefficients of each variable is taken to form a matrix.

Row operations are then performed on the augmented matrix. This operation can be addition, subtraction, multiplication, or division.

For convenience, Row is written as R1, Row 2 as R2, and so on

R2 - R3 means Subtract Row 3 from Row 2, and so on.

The step by step operations for each question are shown in the attachment.

You might be interested in
Jackrabbits are capable of reaching speeds up to 40 miles per hour. How fast is this in feet per second? (Round to the nearest w
Sonja [21]
To solve this problem, we are going to use a scientific/mathematics strategy called Dimensional Analysis.

40 miles / 1 hour * 5280 feet / 1 mile = 211200 feet / 1 hour

211200 feet / 1 hour * 1 hour / 60 minutes = 3520 feet/ 1 minute

3520 feet / 1 minute * 1 minute / 60 seconds = approximately 59 feet / 1 second


Jackrabbits travel approximately 59 feet per second, when rounded to the nearest whole number.

8 0
2 years ago
Which of the following is an asymptote of y = sec(x)?
babunello [35]
Answer: option d. x = 3π/2

Solution:

function y = sec(x)

1) y = 1 / cos(x)

2) When cos(x) = 0, 1 / cos(x) is not defined

3) cos(x) = 0 when x = π/2, 3π/2, 5π/2, 7π/2, ...

4) limit of sec(x) = lim of 1 / cos(x).

When x approaches π/2, 3π/2, 5π/2, 7π/2, ... the limit →+/- ∞.

So, x = π/2, x = 3π/2, x = 5π/2, ... are vertical asymptotes of sec(x).

Answer: 3π/2

The figures attached will help you to understand the graph and the existence of multiple asymptotes for y = sec(x).

8 0
3 years ago
Read 2 more answers
The center is (0, -3.2) and the radius is 2.2.
Radda [10]

Answer:

x^{2} +(y+3.2)^{2} =2.2^{2}

Step-by-step explanation:

(x-h)^{2} +(y-k)^{2} =r^{2}

The center is (h, k)

r is the radius

4 0
3 years ago
Which answer is correct?<br> Thank you
stiv31 [10]

Answer:

Vertical angles

Step-by-step explanation:

: If two angles are vertical angles, then they're congruent (see the above figure). Vertical angles are one of the most frequently used things in proofs and other types of geometry problems, and they're one of the easiest things to spot in a diagram. Don't neglect to check for them!

4 0
2 years ago
Read 2 more answers
The geometric mean of a number and four times the number is 22. What is the number?
Misha Larkins [42]
2 square root x • 4x= 22

2x=22

x=11

Answer is 11
8 0
2 years ago
Other questions:
  • 4232 divided by 18 also estimate
    9·1 answer
  • 10) Write an expression: the quotient
    7·1 answer
  • 8/2z=15/60 .solve proportion.
    5·2 answers
  • Triangle XYZ is translated by the rule (x + 1, y − 1) and then dilated by a scale factor of 4 centered at the origin. Which stat
    14·2 answers
  • In a span of 10 days, a presidential candidate is able to visit 20 different cities. Convert this rate into a unit rate of citie
    6·2 answers
  • PLEASE HELP THIS IS THE LAST ONE I NEED TO FINISH IT PLEASE ASAP!!!!<br> 41' 5" − 15' 9"
    13·2 answers
  • (a + 1)(a + 2) = 0 solve quadratic equation by factoring
    7·1 answer
  • Under which condition is the sample proportion, , a point estimate of the population proportion?
    8·1 answer
  • I need the answer immediately!!!!!!
    9·1 answer
  • PLEASE ANSWER URGENT!!!!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!