1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
2 years ago
9

Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =

11 b. x − y − z = 0 30x + 40y = 12 30x + 50z = 12 c. 4x1 + 2x2 + x3 + 5x4 = 0 3x1 + x2 + 4x3 + 7x4 = 1 2x1 + 3x2 + x3 + 6x4 = 1 3x1 + x2 + x3 + 3x4 = 4

Mathematics
2 answers:
lara [203]2 years ago
7 0

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Pavel [41]2 years ago
7 0

Answer:

(a) x1 = 11/13, x2 = 50/13, x3 = -17/13

(b) x = 54/235, y = 6/47, z = 24/235

(c) x1 = 22/9, x2 =164/9, x3 = 139/9, x4 = -37/3

Step-by-step explanation:

Gaussian Elimination Method was the matrix method used in solving the system of equations.

It is done by writing the equations given in an augmented form, this is shown in the attachment. The coefficients of each variable is taken to form a matrix.

Row operations are then performed on the augmented matrix. This operation can be addition, subtraction, multiplication, or division.

For convenience, Row is written as R1, Row 2 as R2, and so on

R2 - R3 means Subtract Row 3 from Row 2, and so on.

The step by step operations for each question are shown in the attachment.

You might be interested in
Dont skip plzzzzzzzzzzzzzzzzzzzzzzzz
natka813 [3]

Answer:

B

Step-by-step explanation:

The slope is rise over run, meaning it is 3/4. The y-intercept is 2, making the equation y = (3/4)x + 2

5 0
2 years ago
How do you use the Descartes' Rule of Signs?
sp2606 [1]

use the number it and equation it with number and new number will form

8 0
3 years ago
At 3:00 AM, the temperature was 44 degrees. By 7:00 AM, the temperature had risen to 60 degrees. What was the average change in
White raven [17]
60-44=16
16/4hrs= 4deg per hour
4 0
2 years ago
What equations can be graph to solve |2x-3|=7?
topjm [15]

Answer:

i think that would be (2,0)

6 0
3 years ago
What is the difference between the profits Mr.Brown's store earned in the first quarter and the third quarter?
Paladinen [302]
The answer is A, because $9,841.28 minus $7,429.84 is <span>$2,411.44</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify using the distributive property. 6(y-8) =
    9·2 answers
  • Find the mean of the data
    7·2 answers
  • Of the total population of American households, including older Americans and perhaps some not so old, 17.3% receive retirement
    12·1 answer
  • Jane wants to plant grass in het backyard. Her backyard is in the shape of a rectangle. Its length is 32 feet and its width is 2
    9·1 answer
  • Which of the following equations matches the graph above?
    7·1 answer
  • Hey!<br><br>I'm a student.<br><br>Can you help me solve this question?<br><br>Thanks!
    14·2 answers
  • Please help!!!!
    5·2 answers
  • Mackenzie has a loyalty card good for a 20% discount at her local hardware store. What would her total in dollars and cents be,
    6·2 answers
  • Order from least to greatest -5/2 1.7 -2
    14·2 answers
  • PLEASE HELP!! will give brainliest for the right answer.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!