He can spend $4.40 on each pet
4.4/22 .
You just have to divide $22 by 5 since Sherman has 5 pets in total
Answer:
x= 1/8 is the correct answer
We know that 1 out of 8 rabbits are gray. And there is 2 gray rabbits.
You have to be proportionate:
there will be 16 rabbits total, because we keep the proportion of 1 out of 8
Answer:
128.8 cm²
Step-by-step explanation:
In the image attached below, the regular polygon is a square which is composed of a small square and a large square. In a square, all the sides are equal.
For the small square, half of the diagonal is 4 cm, therefore the length of the diagonal is 8 cm (2 × 4 cm). Let the length of the side be a cm, using Pythagoras theorem:
a² + a² = 8²
2a² = 64
a² = 32
a = √32 = 5.7 cm
The area of the small square = length × length = 5.7 × 5.7 = 32.5 cm²
For the large square, half of the diagonal is 9 cm, therefore the length of the diagonal is 18 cm (2 × 9 cm). Let the length of the side be b cm, using Pythagoras theorem:
b² + b² = 18²
2b² = 324
b² = 162
b = √162 = 12.7 cm
The area of the large square = length × length = 12.7 × 12.7 = 161.3 cm²
The area of the shaded region = Area of large square - Area of small square = 161.3 cm² - 32.5 cm² = 128.8 cm²
Answer:
- <u>Function</u>:

- <u>Range</u>: option D. 20 ≤ x ≤ 27.37
Explanation:
The function must meet the rule that the pay starts at $20 and it increases each hour by 4%.
A table will help you to visualize the rule or pattern that defines the function:
x (# hours) pay ($) = p(x)
0 20 . . . . . . . . [starting pay]
1 20 × 1.04 . . . [ increase of 4%]
2 20 × 1.04² . . . [increase of 4% over the previous pay]
x 20 × 1.04ˣ
Hence, the function is: 
The range is the set of possible outputs of the function. To find the range, take into account that this is a growing exponential function, meaning that the least output is the starting point, and from there the output will incrase.
The choices name x this output. Hence, the starting point is x = 20 and the upper bound is when the number of hours is 8: 20(1.04)⁸ = 27.37.
Then the range is from 20 to 27.37 (dollars), which is represented by 20 ≤ x ≤ 27.37 (option D from the choices).