Answer:
475.
Step-by-step explanation:
We have been given that for a normal distribution with μ=500 and σ=100. We are asked to find the minimum score that is necessary to be in the top 60% of the distribution.
We will use z-score formula and normal distribution table to solve our given problem.

Top 60% means greater than 40%.
Let us find z-score corresponding to normal score to 40% or 0.40.
Using normal distribution table, we got a z-score of
.
Upon substituting our given values in z-score formula, we will get:





Therefore, the minimum score necessary to be in the top 60% of the distribution is 475.
Answer:
Step-by-step explanation:
<u><em>8).</em></u>
<em>(2)</em> × [ - 3 ]
4x + 3y = 1 ........ <em>(3)</em>
- 3x - 3y = - 6 .... <em>(4)</em>
<em>(3)</em> + <em>(4)</em>
x = - 5
- 5 + y = 2 ⇒ y = 7
<em>( - 5 , 7 )</em>
<u><em>9).</em></u>
<em>(1)</em> ÷ [- 3]
3x - y = - 6 ......... <em>(3)</em>
2x + y = - 4 ........ <em>(4)</em>
<em>(3)</em> + <em>(4)</em>
5x = - 10 ⇒ x = - 2
2(- 2) + y = - 4 ⇒ y = 0
<em>(- 2, 0)</em>
<u><em>10).</em></u>
<em>(2)</em> ÷ 10
x - 0.6y = 0 ⇒ x = 0.6y -----> <em>(1)</em>
0.6y - 2y = 14
- 1.4y = 14
y = - 10
x - 2(- 10) = 14 ⇒ x = - 6
<em>(- 6, - 10)</em>
Now is your turn, you can do it!!
Answer:
Solve for r
−
√
11 < r < √
11
Step-by-step explanation:
the answer of this inequality is
A. x<2