L= 1/8
O=1/4
C=1/8
H=1/8
S=1/8
O or L=3/8
S or C=1/4
S or C or O=1/2
OR mean to add.
First solve for x in the first equation. So you'll have to substitute,
5(3x-7)=20
15x-35=20
Then add 35 to both sides.
15x=55
Divide 55 by 15.
So x = 3.66...
Then plug in 3.7 for x in 6x-8
6(3.7)-8
Its approximately 14.2
Answer:
y=-5/3x+20
Step-by-step explanation:
Let the equation of the required line be represented as ![\[y=mx+c\]](https://tex.z-dn.net/?f=%5C%5By%3Dmx%2Bc%5C%5D)
This line is perpendicular to the line ![\[y=\frac{3}{5}x+10\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B3%7D%7B5%7Dx%2B10%5C%5D)
![\[=>m*\frac{3}{5}=-1\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%2A%5Cfrac%7B3%7D%7B5%7D%3D-1%5C%5D)
![\[=>m=\frac{-5}{3}\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%3D%5Cfrac%7B-5%7D%7B3%7D%5C%5D)
So the equation of the required line becomes ![\[y=\frac{-5}{3}x+c\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2Bc%5C%5D)
This line passes through the point (15.-5)
![\[-5=\frac{-5}{3}*15+c\]](https://tex.z-dn.net/?f=%5C%5B-5%3D%5Cfrac%7B-5%7D%7B3%7D%2A15%2Bc%5C%5D)
![\[=>c=20\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Ec%3D20%5C%5D)
So the equation of the required line is ![\[y=\frac{-5}{3}x+20\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2B20%5C%5D)
Among the given options, option 4 is the correct one.
Get one x+y=3 to y=x+3 and plug it into x-y=1 and you get x-(x+3)=1. Destitute the x and solve. Once you get what x equals plug it to to either equation for the value of x and solve for y