Answer:
![\Sigma_{k=1}^{n}[3(\frac{10}{9} )^{k-1}]](https://tex.z-dn.net/?f=%5CSigma_%7Bk%3D1%7D%5E%7Bn%7D%5B3%28%5Cfrac%7B10%7D%7B9%7D%20%29%5E%7Bk-1%7D%5D)
Step-by-step explanation:
A geometric sequence is a list of numbers having a common ratio. Each term after the first is gotten by multiplying the previous one by the common ratio.
The first term is denoted by a and the common ratio is denoted by r.
A geometric sequence has the form:
a, ar, ar², ar³, . . .
The nth term of a geometric sequence is 
Therefore the sum of the first n terms is:

Given a geometric series with a first term of 3 and a common ratio of 10/9, the sum of the first n terms is:
Something along the lines of this...
<em>The slope is 7/4</em>
<em>This means that for every 7 that Y changes, X changes by 4. Also, the problem would not go through the origin of a graph.</em>
<em>Hope this helps and have a nice day.</em>
<em>-R3TR0 Z3R0 (復古零) </em>

now, the circle of the clock has 360°, if we divide it by 60(minutes), we get 360/60, just 6° for each minute.
now, if there are 6° in 1 minute, how many minutes in 95.49°?
well, just 95.49/6 or about 15.92 minutes, I take it you can round it up to 16 minutes.
so 16 minutes since noon, so is about 12:16, about time get the silverware for lunch.
Answer:
whichu
Step-by-step explanation: