Answer:
Step-by-step explanation:
Hello!
X: the lifespan of a new computer monitor of Glotech.
The average life is μ= 85 months and the variance δ²= 64
And a sample of 122 monitors was taken.
You need to calculate the probability that the sample mean is greater than 86.6 months.
Assuming that the variable has a normal distribution X~N(μ;δ²), then the distribution of the sample mean is X[bar]~N(μ;δ²/n)
To calculate this probability you have to work using the sampling distribution and the following formula Z= (X[bar]-μ)/δ/√n ~N(0;1)
P(X[bar]>86.6)= 1 - P(X[bar]≤86.6)
1 - P(Z≤(86.6-85)/(8/√122))= 1 - P(Z≤2.21)= 1 - 0.98645= 0.013355
The probability of the sample mean is greater than 0.013355
I hope this helps!