Answer:
Sis I think it happened with me but I am not able to remember if u want u can share if it happened with u
The correct response is the second option.
6.1103x10^4. As this was the only answer that had the same number of significant figures as the starting value.
Answer:
Explanation:
The moles of H2 and N2 are as follows respectively, 0.3915mol of H2 and 0.1305 mol of N2.
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
The answer would be B.
U-238 has a n to p ration of 1.6:1. 146 neutrons and 92 protons.
It is actually the most commonly used isotope is reactors.
C-14 is also a radioactive isotope with 8 neutrons and 6 protons.
The usual and ideal n to p ratio is 1:1 such as C-12 or Mg-24