Answer:
sorry please can you snap the diagram ...the question is not clear to my understanding
Answer:
H2SO4 + Al(OH)3 = Al2(SO4)3 + H2O
Explanation:
Parantheses mean present of a subgroup or a group of polyatomic ions in a chemical reaction.
<u>Explanation:</u>
In a chemical reaction, sometimes, a compound may be composed of group of polyatomic ions with other ions. Some of the polyatomic ions are sulfate, carbonate, nitrate, hydroxide, bicarbonate, ammonia etc.
So these polyatomic ions are formed by combining two or more elements. Thus, if the number of polyatomic ions in a compound is more than one, then we use parathesis and write those polyatomic ions in it and write the number of polyatomic ions present in the compound as subscript of the parathesis.
For example, Fe₂(SO₄)₃
So here SO₄ is a polyatomic ion and in the compound 3 atoms of SO₄ is required to neutralize the compound and thus paranthesis is used. Thus, parantheses mean present of a subgroup or a group of polyatomic ions in a chemical reaction.
Answer:
See explanation
Explanation:
Racemization is said to occur when a 1:1 ratio of (+) and (-) enantiomers of a compound are produced in a reaction.
The reaction of optically active (R)-2-methylcyclohexanone with either aqueous base or acid leads to the formation of a planar enol species for reaction with acid and a planar enolate species for reaction with base.
Both reactions involves the formation of achiral species which reverts back to the chiral product with equal chances of the formation of both enantiomers of the product during the process. This leads to racemization of the product in both cases.
Atomic weight of an element can be calculated as follows:
average atomic weight =
(atomic weight of first isotope)(its percentage of abundance) +
(atomic weight of second isotope)(its percentage of abundance)
average atomic weight = 98.225 amu
atomic weight of first isotope = 97.780 amu
its percentage of abundance = 1 - 0.417 = 0.583
atomic weight of second isotope = ??
its percentage of abundance = 0.417
So, just substitute in the above equation to get the atomic weight of the second isotope as follows:
98.225 = (97.78)(0.583) + (mass2)(0.417)
atomic weight of second isotope = 98.847 amu