1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
6

Please help me with percents

Mathematics
1 answer:
Marta_Voda [28]3 years ago
8 0
79%. A percentage is a number out of 100. So in fraction form, just put the percent number over 100.

You might be interested in
Does anyone know how to do these maths question???
Dmitry_Shevchenko [17]

Answer:

Part 1) f(g(x))=3(x^2)+2

Part 2) g(f(5))=289

Step-by-step explanation:

we know that

A composite function is a function that depends on another function. A composite function is created when one function is substituted into another function

we have

f(x)=3x+2

g(x)=x^{2}

Part 1) Determine f(g(x))

To find f(g(x)) substitute the function g(x) as the variable in function f(x)

so

f(g(x))=3(x^2)+2

Part 2) Determine g(f(x))

To find g(f(x)) substitute the function f(x) as the variable in function g(x)

so

g(f(x))=(3x+2)^2

For x=5

g(f(5))=(3(5)+2)^2

g(f(5))=289

3 0
3 years ago
Solve for the indicated variable: ⅖(z + 1) = y for z.
sweet [91]

Answer:

  z = 5/2y -1

Step-by-step explanation:

We observe that z has ...

  • 1 added
  • the sum multiplied by 2/5

To solve for z, we undo these operations in reverse order.

  \dfrac{2}{5}(z+1)=y\qquad\text{given}\\\\z+1=\dfrac{5}{2}y\qquad\text{multiply by 5/2}\\\\\boxed{z=\dfrac{5}{2}y-1}\qquad\text{subtract 1}

5 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Please answer this question. Your explanation does not need to have that much effort put into it. This is a 10 point question.
Elis [28]

Answer:

B and C

Step-by-step explanation:

3 2/5 times 7 = 23 4/5

3 2/5 times 10 = 34

The rest of the answers are incorrect

7 0
2 years ago
Read 2 more answers
The distance between -18 and 15 is equal to_______
ArbitrLikvidat [17]

Answer:

sorry I forgot try googling it

3 0
3 years ago
Other questions:
  • Complete computefibonacci() to return fn, where f0 is 0, f1 is 1, f2 is 1, f3 is 2, f4 is 3, and continuing: fn is fn-1 + fn-2.
    7·1 answer
  • The vertex of this parabola is at (-1, -3). Which of the following could be its equation? the parabola is going left.
    9·1 answer
  • If the sun of a number is tripled, the result is nine less than twice the number. Find the number
    10·1 answer
  • The dashed triangle is the image of the solid triangle. The center of dilation is (6, 6) .
    10·1 answer
  • If 8(2r-3)-r=3(3r+2) what does r equal
    5·2 answers
  • What value of y makes the equation true 3 / -4 equals y / - 16
    12·3 answers
  • Do two whole numbers always have a least common multiple?
    11·1 answer
  • Sarah describes the following situation: When fertilizer was added to one plant and nothing was added to the other plant, there
    7·2 answers
  • The length, l, of the shadow cast by an object varies directly as the height, h, of the object. If k is the constant of variatio
    12·2 answers
  • Somebody help please
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!