(a) If <em>f(x)</em> is to be a proper density function, then its integral over the given support must evaulate to 1:

For the integral, substitute <em>u</em> = <em>x</em> ² and d<em>u</em> = 2<em>x</em> d<em>x</em>. Then as <em>x</em> → 0, <em>u</em> → 0; as <em>x</em> → ∞, <em>u</em> → ∞:

which reduces to
<em>c</em> / 2 (0 + 1) = 1 → <em>c</em> = 2
(b) Find the probability P(1 < <em>X </em>< 3) by integrating the density function over [1, 3] (I'll omit the steps because it's the same process as in (a)):

Answer:
From the graph attached, we know that
by the corresponding angle theorem, this theorem is about all angles that derive form the intersection of one transversal line with a pair of parallels. Specifically, corresponding angles are those which are placed at the same side of the transversal, one interior to parallels, one exterior to parallels, like
and
.
We also know that, by definition of linear pair postulate,
and
are linear pair. Linear pair postulate is a math concept that defines two angles that are adjacent and for a straight angle, which is equal to 180°.
They are supplementary by the definition of supplementary angles. This definition states that angles which sum 180° are supplementary, and we found that
and
together are 180°, because they are on a straight angle. That is, 
If we substitute
for
, we have
, which means that
and
are also supplementary by definition.
Answer:
c i think
Step-by-step explanation:
if im wrong a if its geometric and c if its arithmetic
Answer:

Step-by-step explanation:

x + 3 / 
-(
)
-
-(
)

-(
)
8x +22
-(8x + 24)
