1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
8

What is the name of a polygon with 5 sifea

Mathematics
1 answer:
natta225 [31]3 years ago
7 0
Five sided polygons are known as Pentagons
You might be interested in
Katrinas bank statements shows a closing balance of 172.62 they are no outstanding checks or deposit her checkbook hows a balanc
Maslowich
Some how Katrina has forgotten to write a check amount down in here check book. to find out the amount you would subtract 190.62 from 172.62
5 0
3 years ago
Read 2 more answers
If you give me the correct answer I will give you brainliest plz help
liq [111]
It’s 1 and 2.
Comment if you need clarification.
3 0
3 years ago
30° + 180° (2n + 1), its radian measure is equivalent to?​
Nuetrik [128]

Answer:

Example: Find the radian measure of the angles −70° and 120°.

Solution: To find the radian measure of −70° we multiply −70 by the conversion factor /180. We get

Similarly, for 120° we obtain

Note that when we write an angle as a fractional amount of , for example 2/3 times  we write the result either as the numerator times  divided by the denominator or as the fraction times . So the two values

are equivalent ways of writing the same number. You will see both methods used in the text and in the exercises.

Example: Find the degree measure of /12.

Solution: The conversion factor for going from radians to degrees is 180/. We get

and so the radian measure of /12 is 15°.

Step-by-step explanation:

7 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
What is 258,177 to the nearest hundred thousand
Ostrovityanka [42]

Answer: 300,000

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Given the circumference of a circle formula, solve for r<br><br> Please answer!
    15·2 answers
  • Assuming the pattern continues, what are the next two terms in this
    9·1 answer
  • Find the slope of the perpendicular line y+1/4x=-6
    6·1 answer
  • Which of the following changes will always be true for an exothermic process?
    7·2 answers
  • We are 95% confident that the population proportion in 2000 that supported preferential hiring of women is about 0.0509 and the
    8·1 answer
  • A dolphin calf swims at a depth of -7/4 feet from the sea surface. An adult dolphin swims at a depth 5/3 times the depth at whic
    11·1 answer
  • To find the slope of a line using two points on the line, you can use the slope formula. Which formula will find the slope of a
    12·2 answers
  • What is 2,6(3) <br> How do I write it?
    6·2 answers
  • Which expression is equivalent to 9y + 2(1 – 5y)?<br> A 4y + 2<br> B 19y + 2<br> C y + 2<br> D-y+2
    10·2 answers
  • What is the answer to this question. <br> ill mark you as a brainliest if you help me! thank u! :)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!